
r AR-Ilig 74
THE IMPLEMENT

ATION OF R MUL -B ACKEND DRTRBRSE SYSTEM
1/2AD-AiS 874(MDBS) PART 4 THE R-.(U) NAVAL POSTGRRDfJRTE SCHOOL

U UPCLRS MONTEREY CA S R DEMURJIAN ET AL. FEB 84 NPS52-94-005
UNCLASSIFIED F/G 912 NI

EEEEEEEEEmhEEE
EEEEEEmhEEEmhE
EEEEEEEEmhEmhE
smmhmhEEEEEEE
EhhEEEEEmhEEEI

- - W' '.-.-

L.0Inll'-- " =.2-

.40

MICROCOPY RESOLUTION TEST CHART

NATION4AL BUREAU-40F STANDARDS- 1963-A

. ..-

L~ '!l __,,p .!,jlC,,,,, ,,,i~,& ,' , "., . ,, - ,,, .'* . .P > , .. . J .:... -.. . . .' . . .- . • . .- .- , . - - .

,r- - . - . - . - - , w

NPS52-84-005

NAVAL POSTGRADUATE SCHOOL
Monterey, California

00
0

THE IMPLEMENTATION OF A MULTI-BACKEND
DATABASE SYSTEM (MDBS): PART IV

- THE REVISED CONCURRENCY CONTROL AND DIRECTORY
MANAGEMENT PROCESSES AND THE REVISED DEFINITIONS

OF INTER-PROCESS AND INTER-COMPUTER MESSAGES

Steven A. Demurjian, David K. Hsiao
Douglas S. Kerr and Ali Orooji

C-,

I.. February 1984
,..J

Approved for public release; distribution unlimited D T IC
Prepared for: .t ELECTE
Chief of Naval Research MAY8 1984
Arlington, VA 22217

A

84 05 07

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker D. A. Schrady
Superintendent Provost

The work reported herein was supported by Contract N00014-84-WR-24058
from the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

DAVID K. HSIAO
Professor and Chairman
of Computer Science

Reviewed by: Released by:

DAVID K. HSIAO, Chairman KNEALE T. MARSHALL'
Department of Computer Science Dean of Information a

Policy Sciences

9/

7.'6 4 -7 7. F. 7 F. 7.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) n

[EOTDCMNAINPG READ INsTRucTINs
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO 2. 3RECIPIENT'S CATALOG NUMBER

,. TITLE (and subtitle) The Implementation of a Multi- S. TYPE OF REPORT a PERIOD COVERED

backend Database System (MDBS): Part IV - The Re-
vised Concurrency Control and Directory Management

- Processes and the Revised Definitions of Inter- 6. PERFORMINGORG. REPORT NUMBER
Process and Inter-Computer Messages
7. AUTHOR(a) S. CONTRACT OR GRANT NUMNER(a)

Steven A. Demurjian, David K. Hsiao, Douglas S. N00014-84-WR-24058
Kerr and Ali Orooji

S. PERFORMING ORGANIZATION NAME AND ADDRESS 1O. PROGRAM ELEMENT. PROJECT. TASKNaval Postgraduate School AREA 4 WORK UNIT NUM99RS

Monterey, CA 93943

*< It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATS

Chief of Naval Research February 1984
Arlington, VA 22217 1ue OF r- cs

.-.- 112
14. MONITORING AGENCY NAME A ADDRESS(It different from Controllinj Offico) IS. SECURITY CLASS. (f this #"set)

Unclassified

ISa. EC.ASSIPICATIONOOWNGRADING
SCHEDULE

IS. DISTRIEUTION STATEMENT (of this Report)

I7. DISTRIBUTION STATEMENT (of the abh trct entered in Bleck 20. II differmt how Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Contine en reverse side if naecesary ad IdEntii' bp block number,)

Database systems, concurrency control, directory management, message passing,
multi-backends, attribute search, descriptor search, cluster search, address
generation

20. ABSTRACT (Continue an rever e side If neceesr nd lonitip I block monk..)

The multi-backend database system (MDBS) uses one minicomputer as the master
or controller, and a varying number of minicomputers and their disks as slaves
or backends. MDBS is primarily designed to provide for database growth and
performance enhancement by the addition of identical backends. No special
hardware is required. The backends are configured in a parallel manner. A
new backend may be added by replicating the existing software on the new back-
end. No new programming or reprogramming is required.Ii DD , A 1473 EoITION OF I NOV S Si OBSOLETE Unclassified

S/N 0102- LF- 014- 6601 Ue. .: SECURITY CLASSIFICATION OP THIS PASS (When bet, #.oemN

Unclasified
S@iUYV CLASSIFICATION OF THIS PAGE MhM Da* £1WOmr

A prototype MOBS is being completed in order to carry out the design
verification and performance evaluation. This report is the fourth in a
series which describes the MOBS implementation. 4ft-t-he-report, an overview-

;--rG ;DDS anu ;1 procerc-..sfrue _s first give-e 'The processes in the MOBS
controller (request preparation, insert information generation and post
processing) and the processes in the MOBS backends (directory management,
record processing and concurrency control) have been described in the previous
reports. -fn-t4-s-i-epo-t-,--tbe-chan-ges made in the concurrency control -and
detiay- mana-gmenmt-rocesses. arL--hen discussed. -Q

The concurrency control process, formerly used to control access to just
user data, is modified to control access to directory data as well. The

Adirectory management process is also modified to improve the execution of
update requests. Finally, directory management is modified for the storage

of directory data on the secondary storage.
Next, the report describes the revised definitions of inter-process

messages (messages between processes within a minicomputer) and inter-
computer messages (messages between processes in different minicomputers).
-detate-desc-rption of the sequences of actions for.- directory processing.,-
4s -also given. C.

Finally, we conclude this series of reports dealing with the implementation
of MOBS We also review the next phase of development, which includes a
hardwar 'econfiguration and expansion, a security mechanism, language
interfaces\to support the relational and hierarchical data manipulation
-languages, and the performance evaluation of MOBS.

The appendices contain the detailed design for the concurrency control
process for directory data and the revisions to directory management due tothe storage of directory data on the secondary storage.

-I A

"-'- .,,, , , ..

o IS

S/- 0102 L 0146601 Unclassified

ICURITY CLASSIFICATION Of THIS PAGE(WOmO DO" 20111641

* -. ~ ' ~ .V ".(q(, ". "*I "w .. ", *,*. , * - * . * .*,*, - *. ,..,:..',".,'.,.,':

TALE OF CONTENITS

1.1 Th e Implementation Strategy 4

1.2 Concurrency Control Revisited 5

2.* CONCURRENCY CONTROL IN DIRECTORY MANAGEMEN'T 7

2.1 The Need for Concurrency Control in Directory Management 9

2.2 Concurrency Control in the Descriptor Search (1)6CC) Phase 12

2.2.1 Read and Write Control on Attributes0 12

2.2.2 'ihe 1)6CC Locking Schemeoo......o... 14

2.2.3 The 1)6CC Data Structures 14

2.2.4 The)6CC Lock Conversion Algorithm 16

2.3 Concurrency Control in the Cluster Search (CSCC) Phase o.... 17

2.3.1 Read, Insert-Write, and Update-Write Control on

2.3.2 Descriptor-Id Groups 18

2.3.3 The CSCC Locking Scheme - The Notion of Conflict-Free 19

2.3o4 Two Categories of Locks 20

2.3.5 The CSCC Data Structure *.................. 20

2.3.6 The CSCC Lock Conversion Algorithm ... o 000000000 20

3.* THE REQUEST E)CCuT1ION OF AN UPDATE REQUEST 23
3.1 '1 e Two Phiases of an Update Request 24

3.1.1 Execution of an Update Request without overlap 25
3.1.2 Execution of an Update Request with Overlap 28

3.2 Concurrency Control for Generated-Insert Requests 29
3.2.1 The Design Issues 29

(A) Oni Descriptor Search Concurrency Control 30

(B) On Cluster Search Concurrency Control 31

(C) Onu Database Concurrency Control 00................0.0... 31

~~ ~(D) Conclusions on Generated-Insert Requests 32

3.2.2 The implementation Details *................ 32

(A) Processing Generated-Insert Requests in 1)6CC ... 000**6.. 32

(B) Processing Generated-Insert Requests in CSCC ..o 35

(C) Processing Generated-Insert Requests in Database

Concurrency Control 36

4o* THE SECONDARY-KMFJOY-BASED DIRECTORY mMAET see*@.... 39

4.1 Thie Attribute Search ... o 40

L~~~ MVA -i 0

IM -1W- -..". TV.

4.2 EI* Descriptor Search 42

4.3 Tt*. Cluter Search ** 46

4.4 Th~e Address Generation 49

4.4.1 The Address Generation for a Non-insert Request 49

4.4.2 The Address Generation for an Insert Request 52

5.* AN UPDATED DESCRIPTION OF MDBS8 MESSAGES 55

5.1 Revised Definitions of MDBS6 Messages 00...... 57

5.2 Request Execution in ?4DBS - Viewed Via message Passing0900006 67

5.2.1 Sequence of Actions for an Insert Request 67

5.2.2 Sequence of Actions for a Delete Request o... 0 69

5.2.3 Sequence of Actions for a Retrieve Request with

Aggregate Operator 69

5.2.4 Sequence of Actions for an Update Request Causing a
Change in Cluster 72

6o CONCLUSIONS AND FULTURE PLANS 76

6.1 Hardware Reconfiguration for MDBS o................ 000000000000 76

6.2 New Research o...................................o............ 77

6.2.1 A Security Mechanism 77

6.2.2 Language Interfaces 77

6.2.3 Performance Evaluation eoeooooeoooooooooeooo 78

6.3 What's Next 78

APPENDIX A : HOW TO READ AND FOLLOW THE PROGRAM SPECIFICATIONS 80

A.1 Parts within an Appendix 80

A.2 The Format of a Part 80

A.3 Documentation Techniques for a Part 81

APPENDIX B : THE SSL SPECIFICATIONS FOR DIRECTORY MANAGEMENT COlN-

CURREN0CY CONTROL 82

APPENDIX C : THE SSL SPECIFICATIONS FOR DIRECTORY MANAGEMENT 93

APPENDIX D : REMAINING ALGORITHMS FOR THE SECONDARY-MEMORY-BASED

DIRECTORY MANAGEM4ENT 103

D.1 Updating the Directory Data * *.*.* 103

D.1.1 Updating the MIT and the DCBMT when a New Descriptor

Is Defined 103

(A) Updating the WIT 103

(B) Updating the DCBMT 105

D.1.2 Updating the DCBMT when a New Cluster is Defined 107

D.2 Determining if an Updated Record Has Changed Cluster 109

-IV-

* , •.- .° -" -. .'. .- ° " ". - . -. ".r-w-;' o.---°.

PREFACE

This work is supported by Contract N00014-84-WR-24058 from the Office of

Naval Research to Dr. David K. Hsiao and conducted in the Laboratory for Data-

base Systems Research in the Department of Computer Science at the Naval Post-

- graduate School (NPS). The Laboratory for Database Systems Research was ini-

tially funded by the Digital Equipment orporation (DEC), Office of Naval

Research (GNR) and the Ohio State University (OSU) and consists of the staff,

graduate students, undergraduate students, visiting scholars and faculty for

conducting research and teaching in database systems. In July 1983 the

Laboratory was transferred to NPS and is now supported by ONR and NPS. At that

time the VAX-11/780 was given to OSU. Two PDP-lI/44s with associated disk and

tape drives, the three intercomputer communication devices (PCL-IlBs), five

terminals, and one printer were transferred to NPS and linked to a VAX-11/780

at NPS. The work described in this technical report was started at OSU and

has been completed at NPS.

We would like to thank all those who have helped with the MDBS project.

In particular, the MDBS design and analysis were developed by Jai Menon.

(Now, Dr. Jai Menon of IBM Research Laboratory, San Jose, California.) He has

also provided much help in the detailed designs. A visiting scholar at OSU,

Xing-Gui He, has been involved with the MDBS project. Several undergraduate

* students at OSU have also been involved with the project: Raymond Browder,

*Chris Jeschke, Jim McKenna, and Joe Stuber. Several graduate students, visit-

ing scholars and undergraduate students at OSU have provided much help in the

detailed design and coding: Steven Barth, Julie Bendig, Abdulrahim Beram,

Richard Boyne, Patti Dock, Masanobu Higashida, Jim Kiper, Drew Logan, William

Mielke, Tamer Ozsu, Zong-Zhi Shi, and Paula Strawser. Jose Alegria, Tom Bod-

novich and David Brown have contributed background material which was neces-

sary for making our design decisions. We would also like to thank the labora-

tory staff and other operators at OSU who have provided us with system sup-

port: Bill Donovan, Doug Karl, Paul Placeway, Steve Romig, Jim Skon, Dennis

Slaggy, Mark Verber, and Geoff Wyant.

U. At NPS, we have received strong support form the professional staff of

the Department of Computer Science. In particular, we would like to thank

Albert Wong for his diligent work on VAX and PDP-11 software and Mike Williams

and Walt Landaker for their good work on hardware installation. Finally we

,v

" |, . I. J q . . o I, .u-.. - -. . .-- , N-." L
'

T X. * ~ ~ ~~- * .., . - . * ° ° °- . •-

would like to thank the School and the Department for providing an ideal

enviroment for database system research.

vi

J,'

LIST OF FIGURES

Figure 1 - The MDBS Hardware Organization 2

Figure 2 - The MDBS Process Structure 3
Figure 3a - A Sample Attribute Table (AT) 8

Figure 3b - A Sample Descriptor-to-Descriptor-Id Table (MDIT) 8

Figure 3c - A Sample Cluster Definition Table (CDT) 8

Figure 4 - Three Levels of Concurrency Control in a Backend 13

Figure 5a - The Traffic-Unit-To-Attribute Table (TUAT) 15

Figure 5b - The Attribute-To-Traffic-Unit Table (ATUT) corresponding
to the 'IUAT in Figure 5 15

Figure 6 - A Sample Traffic-Unit-To-Descriptor-Id-
Groups Table (TUlDIGT)*..... 21

Figure 7 - Messages for the Request Execution of an Update Request* 26

Figure 8 - A Sample Attribute Table (AT) 41

Figure 9 - The Attribute Search for a Predicate in a Request 41

Figure 10 - A Sample Descriptor-to-Descriptor-Id Table (MDIT) 43

Figure 11 - The Descriptor Search for a Predicate 45

Figure 12 - A Sample Descriptor-Id-Cluster-Id-Bit-Map Table(DCBMT) 47

Figure 13 - Cluster Search for Each Descriptor Id 48

Figure 14 - A Sample Cluster-Id-to-Secondary-Storage-
Address Table (CSSAT) 50

Figure 15 - Address Generation (non-insert request) for Each
Cluster Id *..*..**... 51

Figure 16 - Address Generation (insert request) 00.......... 53

Figure 17 - MDBS General Message Format 55

Figure 18 - The MDBS Message Types - The Revised Definitions .0.... 56

Figure 19 - Controller Related Messages 58

Figure 20 - REQP, IIG (Controller); DM (Backend) Related Messages 59

Figure 21 - REQP, RECP and PP Related Messages o....................... 61

Figure 22 - (Backend) DM and RECP Related Messages 00....... 63

Figure 23 - DM1, RECP and CC Related Messages,o...............00 65

Figure 24 - Sequence of Messages for an Insert Request o.......o 68

Figure 25 - Sequence of Messages for a Delete Request o.......0.. 70

Figure 26 - Sequence of Messages for a Retrieve Request with
Aggregate Operations 71

Figure 27 - Sequence of Messages for an Update Request 73

Figure D.1 - Inserting a New Descriptor into the DDIT 104

Figure D.2 - Inserting a New Descriptor into the DCBMT o............ 106

Figure D.3 - Inserting a New Cluster Id into the DCBMT 108

Figure 0.4 - Determining if an Updated Record Has Changed Cluster 110

-vii-

1. INTROCTI O

This report is the fourth in a series describing the implementation of

MDBS, a multi-backend database system [Kerr82, He82, Boyn83]. The original

design was given in [Hsia8la, Hsia8lb]. It is assumed that the reader is

already familiar with these earlier reports. We will, however, give a very

brief review of the MDBS design.

An overview of MDBS hardware organization is shown in Figure 1. MDBS is

connected to a host computer through the controller. The controller and back-

ends are, in turn, connected by a broadcast bus. The controller receives

requests from a host computer. It then broadcasts each request to all back-

ends at the same time over the bus. Since the database is distributed across

the backends, a request can be executed by all backends in parallel.

To manage the database (often referred to as user data), MDBS uses direc-

tory data. Directory data in MDBS corresponds to attributes, descriptors, and

clusters. An attribute is used to represent a category of the user data;

e.g., SALARY is an attribute that corresponds to actual salaries stored in the

database. A descriptor is used to describe a range of values that an attri-

bute can have; e.g., (10001 <= SALARY <= 15000) is a possible descriptor for

the attribute SALARY. The descriptors that are defined for an attribute,

e.g., salary ranges, are mutually exclusive. Now the notion of a cluster can

be defined. A cluster is a group of records such that every record in the

cluster satisfies the same set of descriptors. For example, all records with

SALARY between $10,001 and $15,000 may form one cluster whose descriptor is

the one given above. In this case, the cluster satisfies the set of a single

descriptor. In reality, a cluster tends to satisfy a set of multiple descrip-

tors.

The process structure of MDBS is shown in Figure 2. A major design goal
for MDBS was to minimize the work done by the controller and to maximize the
work done by the backends. The controller must, however, perform some func-

tions. It must first prepare a request for execution by the backends. This

function is performed by request preparation. The controller must also coordi-

nate respons 3 from the backends. This function is performed by post process-

ing. addf on, for consistency reasons, certain functions required for

record .4ertion must also be performed in the controller. These functions are

performed by insert information generation.

,I%-1VN

Iq
Bac 1 ... one or more

disk drives

Backed, 2one or more
disk drives

To the
host - Controller
compute

Backnd none or more
*disk drives

Broadcasting
bus

Figure 1. The ?fDBS Hardware Organization
i -2-

%N. 4%

TCONTROLLR\

PROCESSIN

Fig r 2. ST M B r c s
t u t r

-3-RATOIEEAIIO
COMMNICTIO INTERFACE

CO-MUIATO INEFC

AS much work as possible has been given to the backends, this work con-

sists of three categories of functions: directory management, concurrency con-

trol and record processing. The directory management functions are used to

determine the addresses of the records required to process a particular

request. The concurrency control function allows concurrent access to the

database by different requests. The record processing functions perform the

actual data retrieval and storage as well as the processing required on any

particular record (e.g., the computation of a maximum value).

1.1. The Implementation Strategy

In this se--tion we provide the reader with a brief review of the MDBS

implementation strategy. Recall that the implementation strategy involved the

development of MDBS in seven versions, labeled version A to version G. Ver-

sion A was the initial version where the controller and backend functions were

implemented on a single minicomputer. Version A was implemented on a VAX-

J11/780 running the UNIX operating system. It included the request preparation

and insert information generation functions of the controller and the direc-

tory management and record processing functions of the backends. The post-

processing function was not implemented. Instead, the output was displayed

directly from record processing. The disk input/output routines were omitted

'U since they were operating-system-dependent, and subsequent versions of MDBS

would have the PDP-ll/44s (running RSX-1lM) as the actual backends. Since the

database was not to be stored on disks in this version, we implemented a

pseudo-disk using the main memory. In addition, an interactive test interface

'U was implemented.

'4 Version B involved the development of a multi-process, multi-computer

system with the same functionality as version A. The controller had three

processes, request preparation, insert information generation, and post-

processing. The backend had two processes, directory management and record

processing. Concurrency control was added as a third process in a later ver-

sion. Two computers were used, a VAX-11/780 (running VMS) for the controller,
.-% and a PDP-11/44 (running RSX-IIM) for the backend.

Because of the multi-process, multi-computer structure, a message-passing

facility was designed. Three types of message-passing facilities were

defined: message passing within the controller, message passing within the

backend, and message passing between the computers. The first two types are

-4-
-. s - *- *. * -.' 4* - * ' . ** %..\- ' -x x'

Z 77

categorized as intra-computer message passing, the last type as inter-computer

message passing. The original explanation of the MDBS message passing facil-

ity can be found in [Boyn83]. The revised definitions of the MDBS messages is

contained in Chapter 5 of this report.

As just described, version B used only a single backend. Thus we con-

verted to two backends for version C. This version ran on three computers, a

VAX-11/780 and two PDP-ll/44s. However, it still lacked several required func-

tions. There was no concurrency control. In addition, all the data including

the database and its directory, were still stored in primary memories. Thus no

disk input and disk output was required.

By changing from using a simulated disk in version C to an actual disk

system, we obtained version D. This change, though logically simple, was dif-

ficult to implement, since it required the development of a low-level inter-

face with the operating system of the PDP-ll/44s. This interface was dis-

cussed in [Boyn83]. Version D included all the functions we had intended for

our first real system, except concurrency control. Thus we next added a con-

currency control process to give us version E. This process was also described

in [Boyn83].
The next step in our implementation, version F, was to change directory

management so that directory information is stored on the secondary memory
rather than in the primary memory. This change is complex, since restructuring

of the directory data is also required. The secondary-memory-based directory

management of version F is described in [Boyn83].

The final version, version G, will incorporate access control in the

backends and a friendly user-interface in the controller or host computer.

1.2. Concurrency Control Revisited

The main focus of this report is on the modification of the concurrency

control process. Recall that directory data is used for the fast, efficient

access of user data. In order to maintain both the consistency and integrity

of the user data, we must also control access to directory data. Conse-

quently, the concurrency control process developed in version E for control-

ling access to user data, must be expanded to include controlled access to

directory data. In the rest of this report we describe in detail the imple-
mentation of version F, the multi-computer MDBS with concurrency control for

-5-
43C * '*C".".;".:". C *-C.. "." C-:. . ."," " . C ."' .". ." '-'-,--" ' .

directory data. Chapter 2 contains an analysis of the concurrency control

process for directory data. Chapter 3 describes the improvements made in the

request execution of an update request. Chapter 4 describes the changes in the

structure of directory management caused by the use of the secondary storage

for directory data. Chapter 5 presents the revised definitions of the MDBS

messages. Finally, Chapter 6 concludes this series of reports [Kerr82, He82,

Boyn83] on the implementation of MDBS and presents a brief discussion of the

next phase In the development of MDBS.

0 .6

-. ,

.4-6

2. C(ONCURRENCY CONTROL IN DIRECTORY MANAGEMENT

In this chapter we discuss the concurrency control process for directory

data. That is, we consider just how the access to attributes, descriptors,

and cluster definitions must be controlled to preserve the consistency and

integrity of the database. To motivate this discussion, some background infor-

mation is presented.

MDBS is designed to perform the primary database operations, INSERT,

DELETE, UPDATE, and RETRIEVE. Users access MDBS through the host by issuing

either a request or a transaction. A request is a primary operation along

with a qualification. A qualification is used to specify the information of

the database that is to be accessed by the request. There are four types of

requests, corresponding to the four primary database operations. An example of

an update request would be:

UPDATE (FILE=Census and CITY=Cumberland) <POPULATION=40000>

which sets the population of Cumberland to 40,000. Notice that the qualifica-

tion component of an update request consists of two parts, the query

((FILE=Census and CITY=Cumnberland)) and the modifier (CITY=Cumberland). The

query specifies which records of the database are to be updated. The modifier

specifies how the records satisfying the query are to be updated [Hsia8la]. A

user may wish to treat two or more requests as a transaction. In this situa-

tion, MDBS executes the requests of a transaction without permuting them,

i.e., if T is a transaction containing the requests <Rl><R2>, then MDBS exe-

cutes the request Rl before request R2. Finally, we define the term traffic-

unit to represent either a single request or a transaction in execution.

We recall that the directory information is stored in three tables: the

attribute table (AT), the descriptor-to-descriptor-id table (DIT) and the

cluster-definition table (CDT). The attribute table maps directory attributes

to the descriptors defined on them. A sample AT is depicted in Figure 3a. The

descriptor-to-descriptor-id table maps each descriptor to a unique descriptor

id. A sample DDIT is given in Figure 3b. The cluster-definition table maps

descriptor-id sets to cluster ids. Each entry consists of the unique cluster

id, the set of descriptor ids whose descriptors define the cluster, and the

addresses of the records in the clusters. A sample CDT is shown in Figure 3c.

Thus, to control access to directory data, we must control access to the AT,

-7-

,.. 7 %. . I'. .. - -- .

Attribute Ptr

POPULATIONI
S CITY -'

I FILE I

Figure 3a. A Sample Attribute Table (AT)

Descriptor Id

I 0 <= POPULATION <= 50000 I Dll
I 50001 <= POPULATION <= 100000 D12

I 100001 <= POPULATION <= 250000 D13

250001 <= POPULATION <= 500000 D14

CITY = Cumberland D21

CITY = Columbus D22

FILE = Employee D31

FILE = Census D32

Dij = Descriptor j for attribute i.

Figure 3b. A Sample Descriptor-to-Descriptor-Id Table (DIXT)

Id Desc-Id Set Addr

I Cl I {Dll,D21,D31} I Al,A2 I
I C2 I {D14,D22,D32) I A3 I

Figure 3c. A Sample Cluster-Definition Table (CDT)

-8-

"I *.-.' g%, € - ".- . ": - - .- - ...,. * -- * .. .-*~~ € . - ,,

DDIT, and CE.

Lastly, we identify three classifications of descriptors. A

descriptor is a conjunction of a less-than-or-equal-to predicate and a

greater-than-or-equal-to predicate, such that the same attribute appears in

both predicates. An example of a type-A descriptor is as follows:

((POPULATION >= 10000) and (POPULATION <= 15000)).

A t-B descriptor consists of only an equality predicate. An example of a

type-B descriptor is:

(POPULATION = 17000).

Finally, a jype-C descriptor consists of the name of a j -C attribute. The

type-C attribute defines a set of type-C sub-descriptors. Type-C sub-

descriptors are equality predicates defined over all unique attribute values

which exist in the database. Fbr example, the type-C attribute CITY forms the

type-C sub-descriptors

(CITY=Cumberland), (CITY=Columbus)

where "Cumberland" and "Columbus" are the only unique database values for

CITY.

In the remainder of this chapter we first consider just why concurrency

control for directory data is needed in MDBS. Then we examine the concurrency

control process in the descriptor search phase. Lastly, we describe the con-

currency control process in the cluster search phase.

2.1. The Need for Concurrency Control in Directory Management

To understand the need for controlling access to directory data, we

review the execution sequence (without concurrency control) of a request (or a

request of a transaction) when it is received by the backend. First, the

directory management process determines the directory attributes for the

request. This is the attribute search phase. Second, by looking up the

directory attributes in the AT, directory management determines the descriptor

id(s) for the request, i.e., the AT contains pointers to the DDIT, which con-

tains the descriptor ids. This is the descriptor search phase. Using the

descriptor id(s), directory management then determines the cluster id(s) of

the cluster(s) that the request needs for execution. This is the cluster

-9

* . . - ,- . *. . , .. ,, , , . . , ' .-. - , .- - .- , .- .,. . . .* -, 4.. - .- . -'4 . " ,

search phase. The directory management process performs the address genera-

tion function and then sends the request to record processing for execution.

Access to user data is controlled by the database concurrency control

Aprocess (DBCC), which was presented in [Boyn83]. When the D8CC receives a

request from directory management, it attempts to lock all of the cluster(s)

required by the request. Locking clusters involves a series of exercises in

_ which access to certain entries of directory data tables is controlled. Fbr

example, if a cluster number in the CDT is locked, then other requests cannot

access the Addr field of the CDT. Consequently, the numbered clusters cannot

be accessed. his is done to insure the consistency of the user data. Before

we examine why concurrency control is needed in the descriptor search phase,

we observe that concurrency control is not needed for the attribute search

phase. This occurs since attributes cannot be added to the database, rather

they are defined when the database is loaded. However, new attribute values

may be defined for an attribute if it is a type-C attribute.

. Consider a user database consisting of three attributes, FILE, POPULATION

and CITY, with the AT, IT, and CUT as in Figure 3a, 3b, and 3c, respec-

tively. Note that FILE and CITY are type-C attributes, and that four type-A

descriptors are defined for POPULATION. Suppose the name of Cumberland is to

be changed to Slumberland through the request

UPDATE (FILE=Census and CITY=Cumberland) <CITY = Slumberland>.

Using the AT, directory management determines that the directory attributes

for the request are FILE and CITY. Now the request enters into the descriptor

search phase. Using the pointers from the AT, the descriptor search function

determines that D32 is the descriptor id for (FILE=Census), and that D21 is

the descriptor for (CITY=Cumberland). The insert generated by this update is

INSERT (<FILE,Census>,<POPULATION,58000>,<CITY,Sl1umberland>).

Since there is no descriptor for <CITY,Slumberland>, a new type-C sub-

descriptor id, D23, i.e., the id of descriptor 3 for attribute 2, is created

for the pair <CITY,Slumberland>.

Now, suppose that a new request, RETRIEVE (CITY NOT= - Boston) (CITY),

arrives at the directory management process for processing. The predicate,

(CITY NOT- Boston), specifies the restriction on which records are to be

- 10
.-. - v%'-. % .* . .. - o, -°,- ,..o.....****..-.- . * • *-.-

. " . .** * . .p .* ' ; . ." .. . ',

- . -S .. . - . - . - , .. p

retrieved. The clause, (CITY), spedifies which attribute value is to be
selected. Note that the new request needs all of the descriptors for the

attribute CITY. Without concurrency control on the descriptor search phase of

directory management, the following situation could arise. The retrieve

request could find only D21 and D22 as descriptors for the attribute CITY.

The update could then take place changing Cumberland to Slumberland causing

the record to change to a new cluster, C3, defined by the descriptor id set

{D14,D23,D32}. The retrieve request, however, will only retrieve those

records of cluster C2, thus missing the newly updated record which also has

the attribute value of the attribute CITY. Notice that the retrieve should

not be allowed to do descriptor search until after the new descriptor id D23

had been created. In general, new type-C sub-descriptors may be generated for

a type-C attribute, by an INSERT or an UPDATE request. Consequently, we must
control access to the DDIT by locking the type-C attributes of the AT that

appear in the request (see Section 2.2). If the type-C attributes of the AT

are locked, the access of descrintor pointers by later request(s) is prohi-

bited. Finally, let us examine why concurrency control is needed in the clus-

ter search phase, by following the INSERT request defined above.

In the example above, recall that the descriptors defined for the INSERT

are D32 for FILE, D12 for POPULATION and the newly created D23 for CITY.
Notice that no cluster is defined in the CDT (Figure 3c) for the set of

. descriptors {D12,D23,D32}. Thus, a new cluster C3 is created for the set of

descriptors {D12,D23,D32}. The address for C3 is assigned during the address

generation phase. The record for the insert request,

(Census,Slumiberland,58000), is inserted into the secondary storage by record

processing using the generated address.

Suppose that we are controlling access at the descriptor search phase.

When the new request RETRIEVE (CITY NOT=- Boston) (CITY) arrives at directory

management, it must wait until the INSERT finishes descriptor search. When the

INSERT request releases its lock on the directory attribute CITY, the new

request locks CITY. Now, when the new request accesses the DDIT it will

determine that D21, D22, and D23 are the required descriptors. But there is

bi still a problem when the new request arrives at the cluster search phase. If

cluster search for the new request occurs before C3 is created, then Cl and C2

are determined to be the required clusters. Once again, there will be an

inconsistency in the data accessed for the RETRIEVE request. Therefore, we

~- 11 -

* : " ,* + ,." -" .' ++ " + +' + .- .*, % *

=.k - . . = . ; . . .' ' - =: - . , -'. -. - . .-..

must control access to the CDT by locking the descriptors of the DDIT. If a

request cannot access a given descriptor, it cannot access the cluster ids

associated with that descriptor.

Since uncontrolled access of the EDIT and CDT may lead to inconsistency,

we have developed two concurrency control mechanisms. Descriptor search con-

currency control (D1CC) controls access to the DDIT by locking directory

attributes of the AT. Cluster search concurrency control (CSCC) controls

access to the CDT by locking descriptors of the DDIT. Combining these two

functions with DBCC yields what was labeled the concurrency control process in

Figure 2. Lastly, Figure 4 is a pictorial description of how a request moves

through the process structure of the backends.

2.2. Concurrency Control in the Descriptor Search (DSCC) Phase

In this section we examine the descriptor search concurrency control

mechanism. We begin by considering the conditions under which the MDIT

changes. The DIT contains for the database three types of descriptors,

type-A, type-B, and type-C. Recall that type-A and type-B descriptors, and

type-C sub-descriptors are defined and stored in the DIT at the database-load

time. New type-A and type-B descriptors will not be created in the run-time

environment. However, type-C sub-descriptors are generated and stored in the

IT as new records with new values for type-C attributes are inserted in the

database. So, we focus on the conditions under which new type-C sub-

descriptors will be generated. Thus we examine the effect of type-C attri-

butes appearing in the qualification component of a request.

2.2.1. Read and Write Control on Attributes

To control access to the MIT, we lock the appropriate attributes of the

AT. The retrieve and delete operations do not modify the MIT. Retrieve and

delete requests only read the information in the MDIT. Thus, for a retrieve or

delete request, the type-C attributes needed by the request are locked for

read access of the AT. In the previous section, we demonstrated that insert

and update requests can modify the MDIT. If an insert request is inserting a

type-C attribute value into the database, and no descriptor exists for that

value then a new type-C sub-descriptor will be generated. Since there is no

way to determine if a new descriptor will be generated for an insert request

until the insert request tries to do descriptor search, the insert request

- 12 -

~Request

from

Controller

V
II+---------------------- +

SAttribute < >1 Attribute Table
Search I

Concurrency
Control

v
I I -I= = == = +

Decrptr <>1 Descriptor-to-
Search Descriptor-Id

- 1, I Table

V

Cluster
Search
Concurrency
Control

+ -

Cluster < >1 Cluster-I Search Definition Table

V

I Database
Control4 Concurrency

Record
+Processing

I
Reuest

Controller

Figure 4. Three Levels of Concurrency Control in a Backend

- 13 -

must be granted write control on type-C attributes. So, the type-C attributes

of an insert request are locked for write access of the AT.

In the previous section we also saw that the ID)IT may be changed by an

update request if the attribute listed in the modifier is la type-C attribute.
In this situation, the update must be granted write control on the type-C

attribute listed in the modifier, implying that the attribute is to be locked

for write access of the AT. Additionally, an update request is granted read

control on all type-C attributes listed in the query but not listed in the

modifier. These attributes are locked as read access of the AT.

2.2.2. The DSOC Locking Scheme

The previous two paragraphs have described the standard read/write model

for concurrent access to records of the database. The read/write model, often

specified in database textbooks [Ullm82,Date83], can be characterized in three

steps. First, multiple read locks on a record are permitted. Second, a write

lock on a record excludes other reads and writes to that record. And, third,

a write lock is granted on a record only if the record is not locked (for

either read or write). In this context, a record is an entry of the directory

table AT. With respect to the locking scheme of the AT, we conclude that

type-C attributes of the AT can have either multiple read locks or a single

write lock.

2.2.3. The DSCC Data Structures

p. We have developed two data structures to store the information needed for

the descriptor search concurrency control mechanism. The traffic-unit-to-

attribute table (TUAT), is a table internal to the descriptor search con-

currency control mechanism (DSCC). The TUAT contains a list of traffic units

and the type-C attributes needed by each request in each traffic unit. The

mode of the request, either read or write, is also stored for each type-C

attribute. This table is used to determine the status of any traffic unit.

Additionally, this table keeps track of how many requests there are in a tran-

saction. A sample TUAT table is shown in Figure 5a. The TUAT contains

entries for four single requests and one transaction of two requests.

The second data structure, the attribute-to-traffic-unit table (ATUT) is

used to keep track of which traffic unit(s) have requested locks on which

type-C attribute(s). This table is essentially an inverse of the TAT. This

- 14 -

A 4. .,: - .---.- ,'..:.:- 7 :.> v ;

TLaffic-Units H Requests

T1UI Al A2 A3
(one request) r r w

(one request) w w

(one request) r r

7U14 Al A3 A(one request) r r w

_ _ _ _ _ ' I
(two requests) r w

Ai = Attribute Name 1
I =J Traffic Unit j

MODE of Request

r = Read
w = Write

Note: Requests within a transaction are executed
sequentially. The attributes of a request
are separated from the attributes of
another request by a bar.

Figure 5a. A Sample of the Traffic-Unit-To-Attribute Table (TUAT)

utes I Traffic-Units
'4, ~ ~ Attiutes I ___I,-

Al iITUl TU4 TUl and TU4 are perform-
_ r r ing descriptor search.

A2 I TUI TU3 TU5,Rl TUl TU3 and TU5rR1 are
I I r r r performing descriptor search.

A3 I TUl TU2 TU4 TU5,Rl TUl with exclusive write lock
I w w r w is performing descriptor search.

A4 3 TU4 TU5,R2 TU3 is performing descriptorI r w r search.

A5 I TU2 TU2 with exclusive write lock
I w is performing descriptor search.

TUm,Rn = Request n of Traffic Unit m

Figure 5b. The Attribute-To-Traffic-Unit Table (ATUT) corresponding
to the TUAT in Figure 5a.

- 15-

06 L%-

table contains a queue for each type-C attribute. Each attribute queue con-

tains an entry for each of the requests requiring that attribute. Each entry

contains an identifier for the request (the traffic unit and the request

number) and the mode of access required (read or write). Figure 5b shows the

ATUT corresponding to the TUAT shown in Figure 5a. At this point, we can now

examine the descriptor search concurrency control mechanism.

2.2.4. The DSCC Lock Conversion Algorithm

When a traffic unit is ready for descriptor search, directory management

sends a message to the descriptor search concurrency control mechanism. The

message consists of a list of all type-C attributes needed by each request of

the traffic unit, and the type of request, either INSERT, RETRIEVE, UPDATE, or

DELETE. When such a message is received, DSCC stores the information for the

traffic unit in the ATUT and TUAT, converting the request type to the

corresponding mode, either read or write. Then the lock conversion process

begins. For each attribute needed by each request of the new traffic unit, the

lock conversion algorithm determines if the lock can be granted. If the lock

-.... is granted on an attribute, DSCO notifies directory management that the

descriptor search on that attribute can begin. The process stops when the last

4attribute of the last request has been examined. Directory management noti-

fies DSOC when the descriptor search on an attribute for a request is com-

pleted. For insert and update requests, all locks are released at once. For

non-insert requests, the locks are released one at a time. DSCC then removes

the attribute from the ATUT and the request from the TUAT, and attempts to

grant locks for all other request(s) waiting for that attribute.

4 Now let's examine the lock conversion function. Suppose that a request R

needs to lock an attribute A. The queue of the ATYJT for attribute A is

scanned. A pictorial description of the attribute-A queue is given below:

ATTRIBUTE A : Earlier Requests, R, Later Requests

There are two cases to consider; whether R needs a read lock or a write lock

on attribute A. R can obtain a read lock on attribute A if

(a) R is the first request in the attribute-A queue,~or
- (b) all earlier requests in the queue have locked

attribute A for read access.

R can obtain a write lock on attribute A if and only if R is the first request

- 16 -

in the attribute-A queue. (Note: The special case of processing insert(s) gen-

erated by updates is examined in Chapter 3.) To fully understand the descrip-

tor search concurrency control mechanism, we step through the algorithm using

an example. Details of the algorithm are shown in Appendix B.

Suppose that the new traffic unit is TU5, which consists of two requests

(see Figure 5b). The first request, RI, needs a read lock on A2 and a write

lock on A3. The second request, R2, needs a read lock on A4. The lock

conversion process first tries to determine if the read lock can be granted on

A2, the first attribute needed by the first request of the traffic unit. Since

the two earlier requests, 7Ul and TU3, both have read locks on A2 (see A2

queue of ATUT, Figure 5b), the read lock on A2 for R1 of TU5 is granted, i.e.,

an attribute can have multiple read locks. DSCC notifies directory management

that descriptor search can begin on the attribute A2. Now the algorithm tries

to lock A3 for write access. Since R1 is not the first request in the ATJT

queue for A3, the lock is not granted. Now the algorithm begins examining the

second request. R2 will be granted a read lock on A4 only if all earlier

requests in the A4 queue of the ATUT table have read locks. Since TU4 is

requesting a write lock on A4 (see Figure 5b), the lock is not given to R2.
* Since all the attributes of each request have been examined, the algorithm

stops.

2.3. Concurrency Control in the Cluster Search (CSCC) Phase

In this section we examine the cluster search concurrency control mechan-

ism. We begin by considering the conditions under which the CDT changes. An

entry of the CDT consists of the cluster number, the cluster definition, and
the secondary storage addresses for the records in the cluster. The cluster

definition is the set of descriptor ids whose descriptors define the cluster.

Such a set is called a descriptor-id set. Descriptor-id sets are unique, and

are used when referring to clusters. They are system data for permanent use.

On the other hand, the descriptor search phase creates one or more
descriptor-id groups for a request. A descriptor-id group is a collection of

descriptor ids which define a set of clusters needed by the request. Thus
descriptor-id groups are user data for one-time use. Since each cluster is
defined by a descriptor-id set, we say that a descriptor-id group corresponds
to the descriptor-id sets defined by the clusters needed by the request.

41.
. ., - 17 -

An insert request has exactly one descriptor-id group which corresponds

to a unique cluster, i.e., a single descriptor-id set. A retrieve, delete, or

update request can have multiple descriptor-id groups, and each group can

correspond to multiple clusters (or descriptor-id sets). We denote

descriptor-id sets by curly brackets (...}), and descriptor-id groups by

square brackets Q ...]).

A new cluster is generated whenever there is a new record whose

corresponding descriptor-id group is different from all the existing

descriptor-id sets. Thus, to control access to the CDT, we lock descriptor-id

groups. If a descriptor-id group is locked, then access to the cluster defin-

itions is controlled. So, we need to determine what type of access the four

primary database operations need on descriptor-id groups.

2.3.1. Read, Insert-Write, and Update-Write Control on Descriptor-Id Groups

The retrieve and delete operations do not modify the CMr. Retrieve and

delete requests only read the information in the CDT. Thus, for a retrieve or

delete request, the descriptor-id groups needed by the request are locked for

read access. In an earlier section, we showed that an insert request can

modify the Mr. If the insert request is inserting a record whose

descriptor-id group does not correspond to an existing descriptor-id set, a

new cluster will be created. We do not know if a new cluster will be created

for an insert request until after cluster search, so, the insert request must

be granted write access on its descriptor-id group. We refer to this as lock-

ing the descriptor-id group for insert-write control.

The last type of request, an update request, may also create a new clus-

ter. In the previous section we presented an example of an update request

that changed the attribute values in all records of the Census file with city

equal to Cumberland to Slumberland. In this situation, a new type-C sub-

descriptor, D24, for (CITY=Slumberland) was created. The descriptor-id group

generated for the update request in the descriptor search concurrency control

phase is [D2*,D321. The descriptor D2* is used to represent all possible

descriptors for the attribute being modified. Since there is no way to anti-

cipate the creation of a new type-C sub-descriptor for the update request

before the record processing phase, we represent all existing and possible

future descriptors for the attribute city using D2*. Thus, [D2*,D32]

represents a set of descriptor-id groups. Using this scheme we can logically

S - 18-
--. V- - - ' %'i' - -.-. * " -.- w "

control access to any request that tries to use a cluster containing a

descriptor for the attribute city. The descriptor-id group [D2*,D32] is a

subset of the descriptor-id set {Dll,D21,D32}, which defines cluster C2. The

update request would need write access to the group [D2*,D321, which includes

cluster C2, in order to prevent other requests from accessing cluster defini-

tions associated with that group until the update request is completed. This

prevents other requests from accessing cluster definitions which are supersets

of [D2*,D321. Thus, an update request must be granted write control on its

descriptor-id group(s). We refer to this as locking the descriptor-id

group(s) for update-write control.

2.3.2. The CSCC Locking Scheme - The Notion of Conflict-Free

The differentiation between the insert-write and update-write locks is

mandated by the complexity of the cluster search locking algorithm. Instead

of comparing single units, we compare descriptor-id groups. We begin with a

definition. Two descriptor-id groups are said to be conflict-free if

(a) both descriptor-id groups require read locks,oror (b) one or both descriptor-id groups require write locks
and they do not de-fine the same cluster.

Now let us discuss how to determine if two descriptor-id groups are conflict-

free. There are two cases to consider depending on whether or not one of the

requests is an insert.

Two descriptor-id groups for non-insert requests are conflict-free if

they contain different descriptors for a common attribute. This occurs since

a cluster cannot contain two descriptors for an attribute, i.e., it is there-

fore not possible for the two descriptor-id groups to be subsets of the same

cluster. As an example, the two descriptor-id groups [DI1,D22] and [Dll,D23]
V are conflict-free since they have different descriptors for attribute 2, i.e.,

D22 and D23. Conversely, the two descriptor-id groups [D1,D22] and [Dll] are

in conflict since [D1] is contained in (DI1,D22] and therefore the groups can

be in the same cluster. Further, observe that [D1] and [D22] are also in

conflict, since there may be a cluster containing them both.

If one or both of the descriptor-id groups represents an insert request,

the test for conflict-free is different since the descriptor-id group for an

insert request represents a unique cluster. If both requests are inserts,

- 19 -

4.
then the descriptor-id groups are conflict-free if the descriptor-id groups

are not identical. If one of the requests is a non-insert request, then the

descriptor-id groups are conflict-free if the descriptor-id group for the

non-insert request is not contained in the descriptor-id group for the insert

request.

2.3.3. Two Categories of Locks

To keep track of which descriptor-id groups have obtained either a read,

insert-write, or update-write lock, we introduce two categories of locks on

descriptor-id groups: "to-be-used" and "being-used". As soon as a request

reaches a backend, it locks the descriptor-id group(s) it needs in the "to-

be-used" category. The "to-be-used" category of locks secures the request's

claim for a "being-used" lock on a descriptor-id group. In this way, we can

prevent a later request from locking a descriptor-id group for which an ear-

lier request is waiting. Before the request can do cluster search, the locks

on all descriptor-id group(s) must be converted to the "being-used" category.

The "being-used" lock signifies that a request has access to a descriptor-id

group. A "being-used" lock is granted on a descriptor-id group if that group

is conflict-free with all earlier descriptor-id group(s).

2.3.4. The CSCC Data Structure

To store the information needed by the cluster search concurrency control

mechanism, the traffic-unit-to-descriptor-id groups table (TUDIGT) was

developed. The TUDIGT contains a list of traffic units and the descriptor-id

groups needed by each request in each traffic unit. The mode, either read,

insert-write, or update-write, and the category, either "to-be-used" or

"being-used", of each descriptor-id group is also stored. Figure 6 shows a

sample TUDIGT which contains entries for four requests and one transaction of

two requests. We now examine the cluster search concurrency control mechanism.

2.3.5. The CSCC Lock Conversion Algorithm

When a traffic unit is ready for cluster search, directory management

sends a message to the cluster search concurrency control mechanism. The mes-

sage consists of a list of all descriptor-id groups needed by each request of

the traffic unit, and the type of request, either INSERT, RETRIEVE,, UPDATE, or

DELETE. The information for the new traffic unit is stored in the TUDIGT,

with the request type converted to the appropriate mode, i.e., either read,
..'.

- 20 -

Traffic-Units II Requests

[Dl,D211 (D12,D221

TUl BU BU
r r

1I [Dll,D21] [Dll,D22] [D23]

TU2 BU BU BU

r r r

[D231

7U3 TBU

iw

[Dll,D24] [Dl2,D221

14 BU TBU

uw trw

[Dl*,D21 [Dl*,D22] [Dll] (D12]

TU5 IR11 TBU TBU JR21 TBU TBU

uw uw r r

TUi = Traffic Unit i
Rj = Request j

MODE of Descriptor-Id Group
*r = Read

iw = Insert-Write
uw = Update-Write

CATEGORY of Request

*TBU = To-Be-Used
BU = Being-Used

Note Traffic units TUI and IJ2 ar. currqntly pe fgrping
cluster search. T3 must wait until TU2 finisnes,
so that it can lock [D23]. The first group of TU4,
[Dll,D241 is conflict-free with all earlier groups.
However, the second group, [D12 D221, conflicts
with the TU. T5, which contains two requests, the
first of which is an update, also is waiting.

Figure 6. A Sample Traffic-Unit-To-Descriptor-Id-Groups Table (TUDIGT)

- - 21-

- 1 00

Insert-write, or update-write. After the information for the new traffic unit

has been stored, the lock conversion process begins. For each descriptor-id

group needed by each request of the new traffic unit, the lock conversion

algorithm determines if the lock can be granted. A lock on a descriptor-id

group can be granted if that group is conflict-free with all earlier

descriptor-id groups. If all locks for all descriptor-id groups for a given

request are converted to "being-used", CSCC notifies directory management to

begin cluster search. The process stops when the last descriptor-id group of

the last request has been examined. Directory management notifies CSOC when

the cluster search for a request has completed. CSCC removes the information

for the request from the TUDIGT and attempts to grant locks for all other

waiting request(s).

Once again, we step through the algorithm using an example. Suppose that

the new traffic unit is TU4, which consists of one request (see Figure 6). We

will assume that the information for TU5 has not been received by CSCC. The
first descriptor-id group [Dll,D24], needs an update-write lock. We compare

[Dll,D241 with all earlier descriptor-id groups. [Dll,D24] is conflict-free

with [D12,D22] since Dll and D12, descriptors for attribute 1, are different.

[Dll,D241 is conflict-free with [DII,D21], [Dll,D221 and [D23] since the

descriptor for attribute 2, D24, is different from D21, D22, and D23. Thus,

the "being-used" lock is granted since [DII,D24] is conflict-free with all

earlier requests. Now the algorithm tries to obtain an update-write lock on

the second descriptor-id group, [D12,D22]. %blile [D12,D22] is conflict-free

with [Dll,D21] of TUI, (D12,D22] conflicts with [D12,D221 of TUL. Therefore,

the lock is not granted. Since all descriptor-id groups for the request have

been examined, the algorithm stops.

There are two final notes on the cluster search concurrency control

mechanism. First, the detailed design of CSCC can be found in Appendix B.

Second, the special case required to handle insert(s) caused by an update

request is examined in Chapter 3.

- 22
*, -. .. "....,. .. '..'.. * -. " .. ,.,".. ." .* ,,"* ,.- -." * .. " v .. *" "*. ; ." *.. ,. v "."S ".2, ",," .,"

3. THE REQUEST EXECUTION' OF AN UPDATE REQUEST

In this chapter we examine the execution sequence of an update request.

* An update request modifies records of the user database. Under normal cir-

cumstances, an update request will retrieve a record from the user database,

update the specified record value, and write the record back to the secondary

storage. The update request will continue until all appropriate records have

been modified. However, under some conditions the update of a record is logi-

cally equivalent to the retrieval of the record, the deletion of the record,

the creation of a new record, and the insertion of the new record. in such a

situation, an insert request must be generated. Thus, processing an update

4 ,~ request must proceed in two logical phases. First, all the records to be

updated are retrieved and either modified or converted to insert requests.

This is the record-modification phase of the update request. Second, the

~ insert requests are performed. This is the generated-insert phase of the

update request. To begin, we focus on the conditions under which an update

-4% request generates an insert request.

Suppose that a user wants to increase all populations between 10,000 and

40,000 people by 15,000 people in the Census file. The update for this

request is listed below:

UPDATE (FILE =Census) and
*lC~JI (PPULATION >= 10000 and POPULATION <= 40000))
V <POPULATION = POPULATION + 15000>

In referring to Figure 3b, the descriptors needed by the request are D31 for

the clause (FILE = Census) and Dl1 for the clause (POPULATION >= 10000 and

POPULATION <= 40000). The cluster corresponding to these descriptors would be

Cl, which is defined by the descriptor-id set {Dll,D21,D31). There are two

~ cases to consider. First, suppose that there is a record in the user database

* .~with population 12,000. The record will be modified by the update request,
changing the record value for population to 27,000 (i.e., 12,000 + 15,000).
The descriptor id for this record value is still D1l, so the modified record

4. Is written back to the secondary storage.

Now, assume that there is a record in the user database with population

37,000. This record will be modified by the update request, changing the

record value for population to 52,000 (i.e., 37,000 + 15,000). The descriptor

* ~id for this record is now D12, 50001 <-~ V)PU[AION <= 100000. But notice that

- 23-

- .,-,- . . I

there is not a cluster defined for this record (see Figure 3c). Thus a new

cluster id corresponding to the descriptor ids, D12, D21 and D31, would be

entered into the CDT. When a record moves from one cluster to another cluster
(either an existing cluster or a new cluster), as a result of the update

action, we say that the record has changed cluster. In this example, the

record must change into a new cluster which results in the definition of a new

cluster. However, the fact that a new cluster is created is not important.

The key point is that the record changed cluster. Since the record has

changed cluster, it cannot simply be written back to the secondary storage

with the modified record value. Instead, the old record will be marked for

deletion and an insert request for the new record will be generated. (Note:

In this example a new cluster is defined from existing descriptor ids.)

In general, an update request will generate an insert request if the

record being modified changed cluster. The insert request generated as a

result of the update request is characterized as a generated-insert request.

In the example above, the generated-insert request would be:
-%

INSERT (<FILE = Census>,<POPULATION = 52000>,<CITY = Cumberland>)

The record to be inserted contains the modified value of the population attri-

bute along with the values of city and file stored in this record. The record

values, Census for file (descriptor D32), 52,000 for population (descriptor

D12) and Cumberland for city (descriptor D21) define the cluster {Dl2,D21,D32)
-' for this record. Thus, an update request can consist of the two logical

phases specified above. The remainder of this chapter examines the two logical

phases, and how generated-insert requests are processed by the descriptor
search, cluster search and database concurrency control mechanisms.

3.1. The Two Phases of an Update Request

In this section we examine the two phases of an update request, the

record-modification phase and the generated-insert phase. It would be desir-

able to overlap these two phases. Otherwise the insert requests must be stored
for later processing. Records may be inserted into a cluster as soon as the
record-modification phase for that cluster has completed. The rest of this

section is divided into two parts. First we examine the execution sequence

for an update request and its generated-insert requests. This analysis does
not assume any overlap between the record-modification and generated-insert

-24-

., ,-

-'V1

phases. Second, we examine how tl;e overlap of the two phases can be imple-

mented.

To motivate this discussion, we recap the execution sequence of a traffic

unit (consisting of one or more requests). The traffic unit is received by

the controller from the host. After processing the traffic unit in the con-

troller, request preparation sends the traffic unit to the directory manage-

ment process of each backend for execution. PAch request in the traffic unit

moves through the backend (see Figure 4) finally reaching the record process-

ing process. Record processing manages the physical data operations, i.e.,

inserting a new record for an insert request, retrieving records for a

retrieve request, etc. When a request has finished processing, record pro-

cessing sends the results to the post processing function of the controller.

Post processing collects the results for a traffic unit and forwards them to

the host.

3.1.1. Execution of an Update Request without Overlap

We begin by examining how an update request is processed by record pro-

cessing. We are assuming that there is no overlap of the record-modification

and generated-insert phases. After the database concurrency control mechanism

determines an update request can execute, directory management generates the

cluster addresses needed by the update request. Record processing cycles

through the clusters track by track, examining all records which satisfy the

update request, i.e., the records which satisfy the query component of the

update request. After retrieving a record, and determining that the record

satisfies the query, record processing recalculates the specified record value

using the modifier. Then, record processing sends the attribute being modi-

fied, along with the old and new record values for this attribute, to direc-

tory management to determine if the record has changed cluster.

There are two cases to consider. If the updated record has not changed

cluster, the modified record is written hack to the secondary storage. If the

modified record changed cluster, the old record is marked for deletion, and

the modified record is sent by record processing to request preparation (of

the controller), i.e., the "changed-cluster-record" message in Figure 7, so

that an insert request for that record can he generated. Now we follow the

actions taken by a generated-insert request.

.?5
L- 25 -

'.

U' % o o • . * *U*** -,'. ,...

"changed-cluster-record"
rK-more-changed-cluster-records" ! Request-

S>Preparation

"enerated-,'. Insert-

request"

"no-more-
generated-
insert-
requests"

"generated-insert request"

- no-mre-generated-insert- vi - : ~requests" i, - -,
Record 1< Directory

IProcessing --- - > 1Managemente i "update-done*

Concurrency]<- ---Control "update-done"

Figure 7. Messages for the Request Execution
of an Update Request

-26-

.***e.* * ..-

4'.

After request preparation receives the "changed-cluster-record" message

(see Figure 7) from record processing, it generates an insert request. The

generated-insert request is broadcast to the directory management process of

every backend (the "generated-insert-request" message from request preparation

to directory management in Figure 7). This request is the same as an insert

request, except that it is marked so that it may be associated with the update

request that caused it. The generated-insert request flows through the pro-

cess structure of the backend (see Figure 4). However, since this insert is

associated with a unique update request, the actions of the generated-insert

request in the descriptor search, cluster search, and database concurrency

control mechanisms must be processed as a special case.

The last stages of the record-modification phase in processing an update

request occur when all records satisfying the query have been examined. The

record processing process sends a message informing request preparation that

there will be "no-more-changed-cluster-records" generated (see Figure 7).

Request preparation keeps track of the generated-insert requests since an

insert request may be generated by any backend, and an insert request gen-

erated at one backend may be carried out at another backend. When request

preparation has received the "no-more-changed-cluster-records" message from

every backend, the record-modification phase of the update request has fin-

ished. Request preparation notifies the directory management process of every

backend that there will be "no-more-generated-insert-requests" (see Figure 7).

When the directory management process of a backend has sent all generated-

insert requests to record processing, and has also received the "no-more-

generated-insert-requests" message from request preparation, directory manage-

ment sends a "no-more-generated-insert-requests" message (see Figure 7) to

record processing. Finally, when record processing has finished executing all

of the generated-insert requests and has received the "no-more-generated-

".: insert-requests" message from directory management, it sends an "update-done"

* . " message (see Figure 7) to directory management. Directory management releases

space being used by the update request, and then notifies concurrency control

(with the "update-done" message) that it can release locks being held by the

update request.

",2

- 27 -

......
r~ :';'''-', .;.-'" .* ' -"-" - "" - -- -.. .- • - - -" -" , '."- - - "" -"" -

3.1.2. Execution of an Update Request with Overlap

When deciding how to process a generated-insert request, we were faced
with the problem of when to store the new records created by the generated-
insert requests. These records must wait until the recorC-modification phase

has finished. If the record for a generated-i isert request is allowed to be
* placed in the secondary storage by record p ocessing before the record-

modification phase has finished, the record-modification phase may modify the
newly inserted record. Such a modification would result in an inconsistent

user database. We have two places where the records created by the
generated-insert requests can be temporarily stored, in either directory
management or record processing. In chosing to store them in record process-
ing, we permit the records to progress through the system as far as possible.

We also discovered that we could easily increase the "intelligence" of
the record processing process. Recall that when processing an update request,
record processing examines the records track by track. when record processing

has finished examining a track, insertion of records of generated-insert
V requests into that track can begin. Such a generated-insert request will not

have to wait until the record-modification phase of the update request is done

before placing new records on the secondary storage. Thus the retrieval and

generated-insert phases can be successfully overlapped.

In the current version of MDBS we have yet to implement procedures to

handle the overlap of the two phases. However, we have developed our design

so that the eventual processing of the record-modification and generated-

insert phases concurrently can be implemented without any major modifications.

Lastly, we examine the steps required to process generated-insert requests.

When database concurrency control determines that an insert (any insert)

request can execute,, directory management generates an address for the
request. Directory management then forwards the insert request and address to

record processing. Record processing checks to see if the insert request is a

generated-insert request. If it is, record processing will hold the insert

request until the record-modification phase of the associated update request
has completed. Otherwise, record processing executes the insert request.

-28-

3.2. Concurrency Control for Generated-Insert Requests

In this section we examine the steps taken to process a generated-insert

request in the descriptor search, cluster search, and database concurrency

control mechanisms. This section is divided into two parts. First, we con-

sider the various design issues when developing a strategy to process

generated-insert requests. These issues are reviewed for the three con-

currency control mechanisms. Second, we examine the implementation details

for processing generated-insert requests in the three concurrency control

mechanisms.

3.2.1. The Design Issues

"4 We begin this section by presenting the general idea involved in the pro-

cessing of a generated-insert request. A generated-insert request is caused
by a particular update request. The update request has locks on all attri-

butes, descriptor-id groups, and clusters needed by the generated-insert

request. When the generated-insert requests of an update request are attempt-

ing to secure locks (on attributes, descriptor-id groups, or clusters), they

have a logical priority over other later requests trying to obtain the same

locks. This is due to the fact that the generated-insert requests represent
the second phase in the execution of an update request, i.e., the generated-

insert requests are part of the update request.

However, we still must be careful when processing generated-insert

requests of the update request. In the descriptor search concurrency control

mechanism, generated-insert requests cannot execute concurrently since they

may conflict with each other, e.g., two generated-insert requests may both

cause the generation of the same new descriptor id. In the cluster search con-

currency control mechanisms, generated-insert requests are also prohibited

• from concurrent execution, since they may create new clusters. However, in

. the database concurrency control mechanism, generated-insert requests of an

update request are allowed to execute concurrently. This occurs since two or

more generated-insert requests are always compatible, i.e., the consistency of

the user database will not be affected if the generated-insert requests are

executed concurrently. The remainder of this section analyzes the design

issues for processing generated-insert requests in the three concurrency con-

trol mechanisms, using an example which is developed in the next subsection.

-- 9-

L ° °. . ' o o • ° ° . 4 5 .°5 *• ..
%o'.' .,,: ._, - .. .*.5 . ,.- * ,* , -. . -, - . .'.' :,-"-" ,"%" , ", " "4 ,* ' ' - N '"

I-¢.

(A) On Descriptor Search Concurrency Control

Suppose that we are processing the update presented in Section 2.1,

UPDATE ((FILE=Census) AND (CITY=Cumberland)) <CITY=Slumberland>.

This update changes the attribute values in all records of the Census file

with city Cumberland to Slumberland. When the update request is processed,

the descriptor search concurrency control mechanism will lock the attributes

V. FILE and CITY of the ATUT. FILE is locked for read access and CITY is locked

for write access by the update request. When the update request finally

reaches record processing, records for the appropriate cluster(s) are

retrieved. When a record containing the values (Census,Cumberland) is found,

r. the CITY record value is changed to Slimberland. Since this record changed

cluster, a generated-insert request is created, say,

INSERT 1 (<FILE,Census>,<CITY,Slumberland>,<POPULATION,record valuei>),

. where record value_1 is the record value for POPULATION. To fully illustrate

the problem, let us suppose that a second generated-insert request was

created, say,

INSERT_2 (<FILE,Census>,<CITY,Slumberland>,<POPULATION,recordvalue_2>),
'-

where record value 2 is another record value for POPULATION. Both of these

requests will have been sent to descriptor search concurrency control.

The generated-insert request, INSERT 1, will be processed first in
descriptor search concurrency control. Assume that INSERT 1 will be granted

locks on the attributes FILE, CITY, and POPULATION. DSCC will notify direc-

tory management that it may do descriptor search for INSERT 1. At this point,

since there is no descriptor id for (CITY=Slumberland), a new type-C sub-

descriptor, with id D23, will be defined. Notice that INSERT 2 also needs

access to this new descriptor, so it must wait until INSERT_1 has finished

descriptor search before it can lock CITY. Thus, these two generated-insert

requests cannot be executed concurrently.

Lastly, it is important to examine the types of locks given to INSERT_1

on the attributes FILE, CITY and POPULATION. In Section 2.2.1 we concluded

that an insert request needs write access on all attributes needed by the

request. However, a generated-insert request is a special type of insert

-30-

,...

. ..-9

request. The update request is holding locks on the attributes needed by the

generated-insert request. One of the attributes, CITY (the attribute being

modified), is being held as write access. FILE is being held by the update

request for read access. Since there is no way that the generated-insert

request INSERT 1 can change the value of FILE, i.e., create a new descriptor,

it is only necessary that this insert request has read access on FILE. Addi-

tionally, we know that the update request does not hold a lock on POPULATION.

Once again there is no way that the generated-insert request can create a new

value for POPULATION. In this situation, since the update is not locking

POPULATION, we ignore the attribute, and simply notify directory management

that descriptor search for the request can commence. Now let us see whether

or not there is any problem in the cluster search concurrency control mechan-

ism.

(B) On Cluster Search Concurrency Control

We first assume that the record values for POPULATION, record value 1 and

record value_2, are represented by the same descriptor, say D1. Working with

the two generated-insert requests INSERT 1 and INSERT_2, we find that INSERT_1

and INSERT_2 will have the descriptor-id group, [IDll,D23,D32], after the

descriptor search phase. Recall that for insert requests, a descriptor-id

group defines a unique cluster. Since their descriptor-id groups are identi-

cal, both re.quests, INSERT_1 and INSERT_2, will define the same cluster.

Since the cluster {Dll,D23,D32} does not yet exist, only one request,

INSERT 1, can be passed to directory management for cluster search. INSERT_2

must wait since a new cluster is to be defined. Once again, we cannot allow

concurrent execution of generated-insert requests.

(C) On Database Concurrency Control

Finally, we arrive at the database concurrency control mechanism. At

this point, we assume that a ncd cluster, C5, corresponding to {Dl,D23,D32}

has been created. The first thing we observe is that the update request is

only locking the cluster l, since C5 lid not exist at the time the update

request locked C1. When the first generated-insert request arrives, it asks

for C5. We first lock C5 F)r the update request. Roth INSERT 1 and INSERT 2

are requesting locks on C5. s;ince insert requests are compatible, the locks

_ 31 -

-- -...-- .. %.....

for both requests are also granted. The requests can now be executed con-

currently, since the records for INSERT 1 and INSERT 2 will be inserted into

different blocks of the same or different track.

(D) Conclusions on Generated-Insert Requests

We must take special care when processing generated-insert requests. We

have a special two-step procedure when handling generated-insert requests.

First, we must include the generated-insert request as part of the original

traffic unit, i.e., the traffic unit which contains the update request that

caused the generated-insert request. Such a step is necessary since the

generated-insert request is the second phase of the update request. Second,

depending upon the concurrency control mechanism, we have different degrees of

concurrency for the generated-insert requests. In the descriptor search con-

currency control mechanism only one request may write to the DDIT. In the

cluster search concurrency control mechanism, only one generated-insert

request may write to the CDT. In the database concurrency control mechanism,

we permit multiple writes to the user database.

3.2.2. The Implementation Details

In this section we investigate the two-step process of handling

generated-insert requests in the DSCC, CSCC, and DBCC respectively. The two

steps are, one, entering the information for a generated-insert request into

the concurrency control data structures, and two, assigning locks for a

generated-insert request.

(A) Processing Generated-Insert Requests in DSCC

In this section we examine the steps taken to process a generated-insert

request in the descriptor search concurrency control mechanism. There are tw

main differences when processing a generated-insert request. First, the

information for the generated-insert request must be entered into the TUAT and

ATJT data structures in the designated place. Second, the locking scheme for

a generated-insert request varies slightly from the one described in Section

2.2.2. We begin by considering how the information for the generated-insert

request is entered into the TJAT and ATUT.

- - 32-

The generated-insert request is received by the descriptor search con-

currency control mechanism with a list of the type-C attributes needed by the
request and a code associating the request with a unique traffic unit are the

update request within the traffic unit that caused the generated-insert

request. The list of type-C attributes needed by the first generated-insert

-'4 request (of a particular update request) is entered into the '1UkT after the

corresponding update request and before any later requests of the traffic

unit. Entries for subsequent generated-insert requests are inserted after

earlier generated-insert requests and before any later requests of the traffic

unit.

En general, an insert request must lock all its attributes for write

access. However this is not the case for a generated-insert request. As an
example, suppose that the generated-insert request was caused by the first
request in traffic unit TU3. The portion of the TUAT table showing TU~3 is

reproduced below.

Traff ic-Units II Requests

T!J3 I A2_A3tA4 t
FW r 1r

Further suppose that the generated-insert request needs write access on attri-

butes A2, A3, and A4. However, since the update request is locking attribute

A3 for read access, attribute A3 for the generated-insert request only

requires read access, i.e., there is no way that a new descriptor can be

created on attribute A3. Thus descriptor search concurrency control will

* change the write access to read access before entering A3 into the TUAT. When
the information for the generated-insert request is inserted into the T'JAT,

the TU3 queue now appears as:

Traffic-Units IIRequests

TU3A2 A A2 A A4 4

---------------- -------- +-

The generated-insert request must be placed after the update request (and anyII other earlier generated-insert requests for this update request) and before
any later requests, since the generated-insert request is part of the update
request, and must be processed after any earlier generated-insert requests and
before any later requests. Thiis is done to insure the consistency of the

-33-

Vm-. 72-- 7 - -'-P_ 7 - _ - -71

directory information, specifically the DDIT data structure.

The information for the generated-insert request must also be entered

into the ATUT. For each type-C attribute needed by the generated-insert

request, an entry consisting of the traffic unit number, the request number,

and the mode of access (either read or write), is created. Each of these

entries is inserted into the corresponding attribute queue of the ATUT in the

following manner. If the update request request also needed this attribute,

the entry is inserted into the ATlUT after the entry for the update request

(and any other entries for earlier generated-insert requests for this update

request) and before entries for any later requests of the same or different

traffic unit. If the update request did not need this attribute, the entry is

discarded.

Following through with the example above, the portion of the ATUT before

the entries for the generated-insert request are added is:

Trutes HTraffic-Units

A2 TU3,R1

A3 jjTU-2 T3,R111 r r

A4 TU1 TU2 TU3,R2
r w r

After the entries for the generated-insert are added, the ATJT table is

TeTraffic-Units

w w

A3 TU2 TU3,RI TU3,FG, r r r

A "TU I72 'IAJ3,R2
II r w r

where RG denotes the generated-insert request. The RG entry for attribute A4
.% was discarded, since the original update request didn't lock M4. After enter-

ing the generated-insert request into the TUAT and ATUT, the processing of the

request begins. The processing of a generated-insert request is the same as

any other request (see Section 2.2.4) except for the lock conversion function.

-34-

'S Suppose that the generated-insert request PC, needs to lock attribute A.

'I The queue of the ATUT for attribute A is scanned (shown below).

ATTRIBUTE A :Earlier Requests, RG, Later Requests

There are two cases to consider:

(a) whfen the earlier requesttadjacent to RG
is the update request tha caused it,

or
* - (o) when the earlier request adjacent to RG
'V is another generated-insert request.

In case (a) we have two possibilities, whether RG is requesting a read or

write lock on attribute A. For either possibility, since RG is the first

* insert generated by the update request, the lock, either read or write, is

granted, regardless of the type of lock being held by the update request. En

case (b), the lock is not granted since a new descriptor may be created by the

earlier generated-insert request currently holding the lock. The net effect

of this locking scheme is the serialization of the generated-insert requests

of an update request. In the example given above, the generated-insert

request will be granted a write lock on A2 and a read lock on A3.

At first glance, there seems to be a serious problem with case (a). When

S. *.3the update request adjacent to the generated-insert request has a write lock,
.~. *we are also granting the generated-insert request a write lock. This seems to
-'pcontradict the standard read/write model described in Section 2.2.2. There

are two key observations to make here. First, we are only using the update

request to retain the lock on a specific attribute. Second, for a generated-

insert request to arrive at DSCC, the update request must be currently in

record processing, i.e., finished with descriptor search. The generated-insert

request is logically part of the update request, and must be allowed to per-

form descriptor search before any later requests. Also, since the update

request has finished descriptor search, there is no chance that inconsistency

may develop in the DDIT. Therefore, we use the update request to hold the

lock for any of its generated-insert requests.

V (B) Processing Generated-Insert Requests in CSCC

This section examines the steps taken to process a generated-insert

request in the cluster search concurrency control mechanism. on~ce again,

-35-

there are two main differences when processing a generated-insert request;

entering the generated-insert request into the TUDIGT (see Figure 6) and pro-

% ' cessing the generated-insert request through the lock conversion scheme.

The generated-insert request is sent to cluster search .:oncurrency con-

trol with the descriptor-id group needed by the request, the mode of the

request (insert-write), and a code associating the request with a unique

traffic unit and the update request within that traffic unit that caused the

generated-insert request. The descriptor-id group for the first generated-

insert request (of a particular update request) is entered into the VJDI(T

after the corresponding update request and before any later requests in the

traffic unit. Descriptor-id groups for subsequent generated-insert requests

are inserted after earlier generated-insert requests for that update request

and before any later requests in the traffic unit. The situation here is the

same as described in the previous section for the TUAT table. After entering

the generated-insert request into the TUDIGT, the processing of the request

*% begins. The processing of a generated-insert request is the same as any other

,* request (see Section 2.3.5) except for the lock conversion scheme.

The locking scheme is somewhat simplified for a generated-insert request.

As described in the previous section, we are just using the update request to
hold the lock on its descriptor-id group for any generated-insert requests.

Also, recall that an update locks its descriptor-id group(s) for update-write

access (see Section 2.3.1). The generated-insert request will be granted an

insert-write lock on its descriptor-id group only if it is adjacent to the

update request that caused it. Other later generated-insert requests will not

be granted an insert-write lock, since their descriptor-id groups will con-

flict with the generated-insert request currently holding an insert-write

lock. In fact, the descriptor-id group for the generated-insert request hold-

Ing the insert-write lock will conflict with any other generated-insert

request's descriptor-id group on the attribute being modified, i.e., the two

groups will not be conflict-free. Once again, we are guaranteeing the seriali-

zation of the generated-insert requests.

(C) Processing Generated-Insert Requests in Database Concurrency Control

This section examines the steps taken to process a generated-insert

! request in the database concurrency control mechanism. Once more, there are

-36-

%. . . * ; . . .' .".. ".' " '" " - . .. "

two main differences when processing a generated-insert request; entering the

information into the traffic-unit-to-cluster table (TUCT) and cluster-to-

traffic-unit table (CTIT) (see [Boyn83] for a description of these data struc-

tures and an explanation of the database concurrency control algorithm), and

processing the generated-insert request through the lock conversion function.

The generated-insert request is sent to database concurrency control with

a cluster needed by the request, and a code associating the request with a

unique traffic unit and the update request within that traffic unit that

caused the generated-insert request. An entry of the TUCT for a generated-

insert request consists of the cluster needed by the request, the type of the

request (an insert), and the category of lock being held ("to-be-used"). The

entry for the first generated-insert request (of a particular update request)

is inserted into the TUCT after the corresponding update request and before

any later requests in the traffic unit. Entries for subsequent generated-

insert requests are entered into the TUCr after earlier generated-insert

requests for that update request and before any later requests in the traffic

unit.

The information for the generated-insert request is also entered into the

CTUT. For the cluster needed by the generated-insert request, an entry con-

sisting of the traffic unit number, the request number, the type of request

- (insert), and the category of lock being held ("to-be-used"), is inserted into

the corresponding cluster queue of the CTUT. If the update request which

caused the generated-insert request also needed this cluster, this entry is

inserted into the CTUT data structure after the entry for the update request

that caused it (and any other earlier generated-insert requests for this

update request) and before entries for any later requests of the same or dif-

ferent traffic unit. If the update request did not need this cluster, i.e., a

new cluster was defined, then an entry for the update request is created

(locking the cluster as "being-used"), and entered into the cluster queue.

The entries for generated-insert requests are entered at the end of this clus-

ter queue. The processing of a generated-insert request in the database con-

currency control mechanism is the same as any other request (see [Boyn83])

except for the lock conversion scheme.

Briefly, the locking scheme for the database concurrency control mechan-

ism tries to convert locks on clusters needed by a request from "to-be-used"

- 37 -

,. .:_.. *.'..,?', .J .J....-....

4

to "being-used". If a "being-used" lock is not granted, a "waiting" lock
assigned to the request for that cluster. The "waiting" lock secures ti.±

request's claim for a "being-used" lock on a cluster. If all locks on clus-
ters needed by a request are converted to "being-used", the request is passel

to directory management. Directory management does the address generation for

the request and forwards the request and generated address(es) to record pro-

cessing. Generated-insert requests are compatible. Since the update request

has secured the lock on a cluster, a generated-insert request is given a

"being-used" lock on the cluster that it needs. Thus, the locking scheme i

very straight-forward.

.3

.4

~- 38 -

4. 4 v ". " . " " " "". ,"""" . - " . - - : "" ' . . " ""- . " . .""" - -" ".". "." " .".". - - " """

4. THE SECONDARY-MEMORY-BASED DIRECTORY MANAGEMENT

In this chapter we describe the implementation of directory management

using the secondary storage. Let us first recall the main functions of direc-

tory management. Directory management receives traffic units from the con-

troller. Directory management processes the traffic unit one request at a

time. Each request passes through a number of phases under the control of the

directory management process. These phases are: attribute search, descriptor

search, cluster search, and address generation (see Figure 4 again). To

proceed through these phases, directory management accesses the directory

data, i.e., the attribute table (AT), the descriptor-to-descriptor-id table

(mDIT), and the cluster-definition table (CDT).

Version A through version E stored the directory data in the primary

memory. In the final version, version F, the directory data is stored in the

secondary storage. When the directory data is in the secondary storage, pro-

cessing is more complex because there is a delay every time some directory

data is to be read from or written to the secondary storage. Additionally,

when a new type-C sub-descriptor is created, a new cluster is defined, or an

address of a new record is allocated, the insertion of new directory data into

the tables maintained on the secondary storage must be performed. Thus, in

the following sections we describe the processing required for each phase of

the secondary-memory-based directory management, attribute search, descriptor

search, cluster search and address generation. Appendix D contains an

analysis of the algorithms required for the insertion of new directory data.

To simplify the discussion, we introduce some new notation and concepts.

In the attribute search phase, we process the query component of a

request one predicate at a time. For each predicate, we must determine the

attribute-id for the attribute in that predicate. In the descriptor search

phase, we also process a request one predicate at a time. For each predicate,

we determine the corresponding descriptor ids. We then create the Cartesian

product of the descriptor ids of each predicate. Each result of that Carte-

sian product is a descriptor-id group. In the cluster search phase, we pro-

cess a request using descriptor-id groups. For each descriptor-id group, we

determine the corresponding cluster ids. Finally, in the address generation

phase, we process a request using cluster ids. For each cluster id, we deter-

mine the corresponding secondary storage addresses of the records in that

-39-

N*T;?C9V .V 7 * . .- --.-- 7 .. -rr

cluster.

The processing during each phase of directory management is described in

terms of the state and state-transition. Each state is represented by a rec-

tangular box, which contains a description of the actions which take place in
the state. The description of each phase will be given using a state transi-

tion diagram. These states include reading a particular type of data such as

an attribute table node or waiting for concurrency control to grant a needed

lock.

Lastly, to further simplify the discussion, we will not mention the wait-

ing state. The waiting state occurs when an area of the primary memory,
referred to as a buffer, is required for an I/O operation. Since there are
only a finite number of buffers in the system, the waiting state is entered

whenever a buffer is not available for the I/O operation.

4.1. The Attribute Search

The first phase of directory management is the attribute search. In this

phase the attribute-id, if any, for the attribute in each predicate of the
query is determined, as well as a pointer to the location of the descriptors

in the MIT for that attribute.

As described in [Boyn83], the attribute table is stored in a B-tree. A
sample B-tree is in Figure 8. Processing is performed for each predicate in
the query. Each node of the B-tree is stored in a different secondary storage
location. Therefore, the nodes must be read and processed one at a time until
the attribute is found. In addition, before the descriptor search can begin

on a type-C attribute, that attribute must be locked by concurrency control

(see Chapter 2 again).

The attribute search is described in more detail in Figure 9. Predicates

are processed one at a time. Fbr each predicate in the query the processing

is as follows. First, the root node of the AT is read (marked with the number

I in Figure 9). Then a sequence of nodes of the AT must be read; either the
attribute is found or a leaf node is reached without finding the attribute
(marked 2 in Figure 9). When the attribute is not in the AT, then we assume it

is a non-directory attribute. In this case, no descriptor search is needed
for that attribute, so the descriptor search for that predicate is finished by

- 40

'p

IAl LCATION I I 1A61 SALARY I I I...I

V V

I I I II - I-o

I 1A21 AGE I I IA31 BALANCE I I I...I I I A71 NAME I I IA81 RANK .

.jVVV V

Pointer to Pointer to
descriptors descriptors
for AGE for NAME

Figure 8. A Sample Attribute Table (AT)

1.

K+
v v

Searching the AT forl
the given attribute I 2+---+

3 5
I _1 V

IWaiting for lock on
the type-C attribute

", 1 6
V _ _

I Descriptor Search Attribute Search
is done I is done

Note: The procedure above is executed for each predicate
in a query before the descriptor search can begin.

7Figure 9. The Attribute Search for a Predicate in a Request

- 41 -

,*_ . ..4.. -. .

?=- ," -

-i

default(3). When the attribute is found in the AT, there are two possibili-

ties. If the attribute is not a type-C attribute, then descriptor search can

begin(4). However, if the predicate we are processing contains a type-C

attribute, the attribute must be locked(5) before descriptor search can begin.

In either case, when the attribute is found, the attribute id and the pointer

to the descriptors for the attribute can now be obtained from the AT and made

available to the next phase of directory management. We say that the attri-

bute search is done for the attribute(6) and the descriptor search begins for

the same attribute (see Figure 11).

The previous discussion focuses on the processing of one predicate of the

query component. The attribute search phase processes all predicates of the

query component, before the descriptor search phase for that request can

begin. Thus, we can have an extra looping structure superimposed on the state

diagram of Figure 9, which cycles through all predicates of the query com-

ponent for a given request.

4.2. The Descriptor Search

The second phase of directory management is the descriptor search. In

this phase the descriptor-ids corresponding to the predicate are determined.

These descriptor-ids are stored in a B+tree as shown in the sample
descriptor-to-descriptor-id table(1)IT) in Figure 10. Briefly, the rO)IT con-

sists of index nodes and sequence nodes. Index nodes are used to traverse the

B+tree. Sequence nodes contain the information for a particular descriptor,

e.g., the descriptor id, and the range of values for that id. Depending on

the relational operator involved, the descriptor search first must determine

either the leftmost sequence node, (for the operators, <, <=, NOT=), or an

intermediate sequence node (for the operators, >, >=, =). If a range of

values is required, then the descriptor search must follow the sequence nodes

to determine the other descriptors. For an illustration, let us refer to Fig-

ure 10 and look at two examples. For the predicate AGE < 30, the descriptors

Dl, D2 and D3 must be determined. This is done by first retrieving the begin-

ning sequence node, the one containing Dl and D2. Then the second sequence

node must be examined to find D3. For the predicate 32 < AGE < 39, the

descriptor corresponding to AGE = 32 must be determined. This descriptor is

D4, which is in the second sequence node. Then D5 can be determined from the

third sequence node.

j1. -42-

• .

from the Attribute Table for the attribute id
of the attribute AGE

v

i f61 f82 1 190

index+-> ->
nodes

v v

S 26 { 36 ! 46! 721 175! 77
t l +-> +.- -> +-> +->

I I,.{.,

--- 4-

sequence v v v
nodes+----+ -+- -i + +- - a .+

Figure f0. A Sample Descriptor-to-Descriptor-Id Table (DDIT)

.3

*
" . . .I I I

. ',., ,,",.,- ; , ._ ,........ ,...,../--""6,11"-,1",,8,,,21",1901 "1,,-,, ,"..':,,',:;1

The steps of descriptor search are shown in Figure 11. First the root

node is read and processed(l). If there is only a root node for this attri-

bute, i.e., the root node is a sequence node , then processing is finished(2).

If the root node is not a sequence node, then the appropriate initial sequence

node must be found. This will be the leftmost sequence node if the predicate

relation is <, <= or NM=. Otherwise, an intermediate node must be found.

In the first case the search is done by reading the leftmost child of the
S"root node(3) and then continuing to read the leftmost child down the tree

until the leftmost sequence node is found(4). If no additional sequence nodes

are required, then the descriptor search is finished for this predicate(5).

If additional sequence nodes are required, one(6) and possibly several(7) more

sequence nodes are read. In the second case, i.e., an intermediate node must

be found, a search down the B+tree is required(8,9). After the sequence node

. is found and if no additional sequence nodes are needed, the descriptor search

is finished(10). Otherwise, additional sequence nodes are still required.

One(ll) and possibly several(7) more sequence nodes are read. After all the

required sequence nodes have been read, the descriptor search is finished(12).

At the end of this phase, the descriptor ids of the descriptors corresponding

to the given predicate are found and made available to the next phase, the

cluster search.

There is some additional processing if an insert request generates a new

type-C subdescriptor. In this situation, the new descriptor-id must be

received before this predicate is ready for the cluster search(13,14). After

the descriptor-id is received, the predicate is ready for the cluster

search(15). The actual insertion of the new descriptor-id is delayed until

all descriptors have been determined. The steps required for the insertion of

the new descriptor-id is described in Appendix D. If there is no new type-C

subdescriptor, then no wait is necessary(12).

The above process is performed for each predicate of the query component

of the request. At the end of the descriptor search phase, we have found a

- list of descriptor ids for each predicate of the query component. The Carte-

sian product of the lists of descriptor ids is formed, yielding a list of

descriptor-id groups for the request. The descriptor-id groups are then

passed to the third phase of directory management, the cluster search.

C q

'" - 44 -

* - . * .. * .. . V * . ~- .-

S Attribute Search
I is doneI

+ - -r -'. -r

V

---- Reading the root node of.DDITI .
Ifor a given attribute id I3 2

V v V V |
+- i +-+

N|4 Reading DX)IT to finj I lReadinq DDIT to find irl-J 9
"leftmost sequence nodeI I termedlate sequence nodel

4-4

I6

2I Searchin a sequence I7 0 14

.515

InD for escriptor r tid

4"I +-I
12-13-+-3--+8

4" + V V

" ~~~is Wainge o nw

I II II
V V V V V

4- + -- - --- -

:: D ~~escriptor ac

Figure 11. The Descriptor Search for a Predicate

44

,t t , . J ' " ,: ". . 4" ,' -" - , - '. ', " " '. ' , ' ' .' .' •" .,- -' . . ,' ..o•1.2 '. 13 , .+ -.+,." . ." ." .

=777477

4.3. The Cluster Search

The cluster ids of the clusters corresponding to the descriptor-id groups

of the request must be determined by examining the cluster definition

table(CDT). The CDT is stored in two parts, a Descriptor-Td-Cluster-Td-Bit-

Map Table (DCBMT) and a Cluster-Id-to-Secondary-Storage-Address Table (CSSAT).

The DCBMT is used during the cluster search phase, while the CSSAT is used

during the address generation phase. A sample DCBMT is shown in Figure 12.

Recall that a cluster is defined by a descriptor-id set. There is a bit map

for each descriptor-id. Each bit map has one bit for each cluster-id in the

database. A 1 bit corresponding to a cluster means that the descriptor-id

appears in the definition of that cluster. Thus in the example, the given

descriptor-id in the bit-map set defining clusters 2,6,11 and 17.

The bit-map index is used to find the bit-map set for a particular

descriptor id. The bit-map index is stored in main memory. A bit-map set

contains pointers to the first set of bits in the bit map for a group of

descriptor ids. This bit map may be subdivided into several blocks. Thus,

for each descriptor id, we retrieve one bit-map set and one or more bit-map

blocks.

,I The cluster-ids corresponding to a descriptor-id group are determined by

logically ANDing together the bit maps for each descriptor-id in the group.

Thus input for the cluster search is the descriptor-id group. The states and

transitions of the cluster search phase are shown in Figure 13.

The cluster search occurs in two steps. First the bit-map sets are

determined for each descriptor id. Then the bit maps for each descriptor id
1% are determined. At this point the bit maps for the descriptor-id groups are

logically ANDed together to determine the required clusters. The bit-map sets

are read first so as to avoid reading a bit-map set more than once.

With slightly more detail in Figure 13, the cluster search proceeds as

follows. First the bit-map set is read for each descriptor-id(l). When all

the bit-map sets have been read(2), the bit maps for each descriptor id can be

found. The descriptor ids are again processed one at a time. The first block

of bits from the bit map is read(4). Then any additional bits from the bit

map are read(5). When all bits have been read, for every descriptor id, the

cluster search is finished(6). If there is no bit map for this descriptor,

"46

I * .b . - .* -. : .. - . - - .- -

-'4

bit-map index(in main memory)

+ - +

v bit-map set v bit-map set

v set of bits set of bits v set of bits

* - - - - - +- + i- - :

0 100010000 I->I11000001000O 1 1

Figure 12. A Sample Descriptor-Id-Cluster-Id-Bit-Map Table (DCBMT)

47-

.4>

+ .-

' *~'*
v set ofbits setof bits se.o.bt

•~ .. -.

Determine the Bit-Map Sets

I .Descriptor Search
-Iis done

. Read ing a bit-map set
-for each descriptor id

2

- +
Reading of the

bit-map sets is done

Determine the Bit Maps

Reading of the

bit-map sets is done

3 Reading bit map1 5~for each-descriptor id

6

'. v v +--

. Cluster Search
is done

Figure 13. Cluster Search for Each Descriptor Id

4,.,
-'- . . . , ..4 . . . % - . - , , . % % -

".'% _.ll l' @ . = .- . -. e '' ''• ' .' ' " ' '' ''.' ' ' '". . .. " " " -4"8-. " "".'
9 # . .' 'r" 4 ' +, +

,
"' ' / Z ' ' , ' :" ' ' " ' ' ; - - - . • - -'; " " " t . . -

then nothing is done(3).

We process each descriptor-id group of the query in the above manner to

determine all of the clusters for the request. After the clusters have been

V '% determined by the cluster search and have been locked by concurrency control,

' it is time to determine the disk address(es) of the data records.

4.4. The Address Generation

This phase, the last phase of directory management, is called the address

generation. As mentioned in the last section the disk addresses are stored in

the Cluster-Id-to-Secondary-Storage-Address Table(CSSAT) as shown in the exam-

ple in Figure 14. Each cluster has a fixed number of addresses stored in a

cluster-address set, two in the example. Additional addresses are stored in

an overflow area.

There are two cases to consider, the processing of insert requests and of

non-insert, i.e., update, delete and retrieve, requests. For non-insert

requests the disk addresses must be determined so that the appropriate data

can be read by record processing. The CSSAT does not have to be modified. On

the other hand, for insert requests it will be necessary to modify the CSSAT,

either to increment the number of records in a track or to add a new track.

Thus this case is more complex.

4.4.1. The Address Generation for a Non-insert Request

Let us first consider the case of a non-insert request. As with the

cluster search, the address generation for a non-insert request is broken down

into two steps for efficiency.

The states and transitions for each cluster are shown in Figure 15. In

the first step, all the cluster-address sets are determined for each clus-

ter(l,2). Then, the actual addresses are determined for each cluster. The

determination of the addresses requires reading the first block of

addresses(4) and possibly several overflow blocks(5). Processing for this

cluster is finished when there are no additional addresses to be found(6). If

there are no records for the cluster in this backend, then, of course, no

reading is required(3).

-49-

.. . . _ -

cluster-address index

+ ++
p t o r pointer to third cluster-address setpointer to first I.....

cluster-address set

-pointer to second
cluster- cluster-address set
address set v
I addrl addr2 I I...I addrl addr2 I I
+-.--- - I I -I +

cluster Cl on
cluster-

pointer to next v address set;s addressesi i ! !
adfor Cl addrl addr2 I

On+l
pointer to next
addresses pointer
•for on to next
v addresses

for Cn$4
overflow

v
addressesv overflow

"I I I I addresses
I addr3 addr4 1 I . . . I I . . . I•,I I I I I

•pointer to next
addresses for Cl

* Nv

Figure 14. A Sample Cluster-Id-to-Secondary-Storage-Address Table (CSSAT)

- 50

",' , " .''',. .'." '.'';,''''.,','. '. .-'.-'..' '-'.-'-. K--' -.' , .§. '. • -. . ,:-.', '': , -', ", ',"" , ', -"

S.,

Determine the Cluster Address Sets

I Cluster Search
is done

Reading a Cluster-AddressI
Set for each cluster id ,

12V

A J Reading of the Cluster-
-. 4I Address sets is done

Determine the Cluster Addresses

Reqc inq of the Cl~pter-
.Addre s sets is done I

4I

.%

3 IReading the secondary stor-I 5
lage addresses for a cluster

V V

Address Generation
I is done

Figure 15. Address Generation (non-insert request) for Each Cluster Id

- 51 -

1. 777. . . -T

4.4.2. The Address Generation for an Insert Request

When processing an insert request, there is only one cluster to be deter-

mined. In fact, only one address at which to store the record needs to be

determined. However, the CSSAT must be updated to reflec, the insertion of

the new record. Reading of the CSSAT is similar to the non-insert case. How-

ever additional processing is needed to update the CSSAT. The states and

transitions for each cluster are shown in Figure 16.

Let us first consider the case where a new cluster is being created. We

get a track for the new cluster. If no cluster-address set exists, then one

is created, the new track address is inserted and the cluster-address set is

written to secondary storage(l). On the other hand, if the cluster-address

set already exists, it must be read(2). The new track address is inserted and

the updated cluster-address set written(3). In either case, the address gen-

eration phase is done(4).

Next let us consider the case of an old cluster. In this case an existing

cluster-address set must be read(2). At this point, processing differs

depending on whether or not overflow address blocks must be processed. No
overflow processing is required if the new record fits in the last track

assigned to the cluster. In this case, the remaining space in the track is

updated and the cluster-address set is written(3). A second case also

requires no processing of overflow blocks. If a new data track is required

and there is room in the cluster-address set for the new track address, then
this address is added, the space remaining in the track updated and the

cluster-address set is written(3). In either case, the address generation

phase is done after the cluster-address set has been written(4).

The most complex processing is required when it is necessary to use over-

flow blocks. Such processing occurs in three cases. The simplest of these
cases occurs when it is necessary to create the first overflow block. In this

case the address of the overflow block, the address of the new track, and the

space remaining in the new track are added to the cluster-address set, which

is then written(5). The new address is also put in the overflow block and

that block is wrltten(6). The address generation phase is done(13) when the

write is finished.

-52-

• .' . - -. -. - - ...- •-. .- .- .--- . -• ;'':2" '. ',: *-: " '.-, ,.-. ".'* .

'1
I Clu~ter Search I
I is doneI

1 2

Cluster-
Address Set Cluster-Address
does not Set exists
exist

V
+--+I Reading the Clster-AMdress
,-. Set for a cluster id

-Writing the Cluster-
I Address Set I

3 8!-9 5
V V

' Reading the secondary 12
storage addresses for

a cluster

9 1
V

N. II

Writing an OverflowI
. Address block

11

4- v
SWriting the Cluster- I~Address Set

ii 6,,V VV V V

I Writing the Cluster- I J Writing last Overflow-Adress Set Address block

. 413

I Address Generation -I
I is done

Figure 16. Address Generation (insert request)

".5

- 53 -

*"Q . **• , *. , -..
. '. . . .**S•

,? k , 0 " ' " -' , " . " " ' -." -" ; ; ' ; ' 4 ' , " " -W ' ..v , ._ .. v -. ,- . , , , - . -" - . ." .- - .-..s "-- -- -. N -

C!

The final two cases occur when the last track is full and the cluster in

question already has one or more overflow address blocks. Since the last

track is full, a new track is required and the address of that track must be

added to the end of the overflow addresses of the CSSAT. Processing begins by

reading the first overflow address(8). If other overflow addresses are

present, they must also be read(12). If there is room in the last overflow

block., the new address is added to the overflow block and that block is writ-

ten to the secondary storage(9). On the other hand, there may be no room in

the last overflow block. In this case, the address for the new block is

obtained and a pointer to it stored in the previous last block(10). After

that write is finished, the new overflow addresses may be written(ll). In

either case, the address generation phase is done after the last overflow

block has been written(13).

In all of the discussion above, it is important to remember that address

generation for an insert request occurs at only one backend, the one the con-

troller has chosen to actually insert the new record. The other backends are

finished processing the insert after they have determined the cluster for the

insert and the controller has broadcast the number of the backend which is to

store the new record.

-54

, -,...,-

5. AN UPDATED DESCRIPTIrN OF MDBS MESSAGES
!,* .*9

In this chapter we examine the revisions made to the MDBS message passing

facilities first described in [Boyn83]. In the MDBS message passing facili-

'4'-. ties there are 31 message types and one general message format (shown in Fig-

ure 17). his same format is used for each of the three message passing

. . facilities, namely, messages within the controller, messages with the backend,

and messages between computers. Messages between computers are divided into

two classes, messages between backends, and messages between the controller

and the backends. Figure 18 describes each of the MDBS message types.

Communication between computers in MDBS is achieved by using a time-

division-multiplexed bus called the parallel communication link (PCL)

[DEC79a]. We built a software interface to this bus for each computer con-

sisting of two complimentary processes. The first process, getpcl, gets mes-

sages from other computers off the PCL. The second process, put_pcl, puts

messages on the bus to be sent to other computers. The controller and each

backend have their own get pcl and put pcl processes.

. In the rest of this chapter, we first present the revised list of MDBS

message definitions. Then, we examine the sequence of actions for an insert,

delete, retrieve and update request in the MDBS message passing environment.

U' Message Type (a numeric code).

Message Sender (a numeric code).

Message Receiver (a numeric code).

.i Message Text (an alphanumeric field terminated
by an end of message marker).

Figure 17. MDBS General Message Format

..
.

-".4

-
- 5

,,. ..p,.,," .% , ,,,, . , ,: .,., .,', ..,.v: -;-,:. . . _ . . , ',. - " -. ' ' ",,-" '. ... , . . .'"

-. -- -

r.- ,\-

MESSAGE-TYPE NUMBER AND NAME i SRC DEST iPATH

REQUEST RESULTS SPP H C
NUMBER OF REQUESTS IN A TRANSACTION QP C

AGGREGATE OPERATORS REQP PP
5 REQUESTS WITH ERRORS REQP PP C,-PARSED TRAFFIC UNIT REQP DM C

,"NEW DESCRIPTOR ID IIG DM CB8

BACKEND NUMBER I hG DM CB
CLUSTER ID DM IIG BC

10 REQUEST FOR NEW DESCRIPTOR ID 1 D.4 I IIG I BC 1
BACKEND RESULTS FOR A REQUEST RECP PP BC
BACKEND AGGREGATE OPERATOR RESULTS RECP PP BC
RECORD THAT HAS CHANGED CLUSTER RECP RERESULTS OF A RETRIEVE OR FETCH RECP RE8P BC

CAUSED BY AN UPDATE

15 DESCRIPTrR IDS 15 ID 15 DMs 15 BB 15
REQEST AND DISK ADDRESSES DM RECP B
CHANGED CLUSTER RESPONSE DM RECP B
FETCH DM RECP B
OLD AND NEW VALUES OF ATTRIBUTE RECP DM B

BEING MODIFIED
%io 20 TYPE-C ATTRIBUTES FOR A TRAFFIC UNIT 21 DM 2) CC 2 B

DESC-ID GROUPS FOR A TRAFFIC UNIT DM CC I B
CLUSTER IDS FOR A TRAFFIC UNIT DM CC B
RELEASE ATTRIBUTE DM CC B
RELEASE ALL ATTRIBUTES FOR AN INSERT DM CC B

25 RELEASE DESCRIPTOR-ID GROUPS 2 DM 25 CC 2 B
ATTRIBUTE LOCKED CC DM B
DESCRIPTOR-ID GROUPS LOCKED CC DM B
CLUSTER IDS LOCKED CC DM B

- 29 NO MORE GENERATED INSERTS RECP REQP BC
29 NO MORE GENERATED INSERTS REQP DM CB29 NO MORE GENERATED INSERTS DM RECP B30 REQUEST ID OF A FINISHED REQUEST 3 RECP 3 CC 3 B 36
31 AN UPDATE REQUEST HAS FINISH RECP DMC B
31 AN UPDATE REQUEST HAS FINISHED DC CC B

SOURCE OR DESTINATION DESIGNATION I PATH DESIGNATION

HOST : HOST MACHINE (TEST-INT) H : HOST
REQP : REQUEST PREPARATION C : CONTROLLER
IIG : INSERT INFORMATION GENERATION C : CONTROLLER
PP : POST PROCESSING C : CONTROLLER
DM DIRECTORY MANAGEMENT I B : A BACKEND
RECP RECORD PROCESSINGI B : A BACKEND
CO : CONCURRENCY CONTROL B : A BACKEND

Figure 18. The MDBS Message Types

-56-

-wi6a V 10W

5.1. Revised Definitions of MDBS Messages

In this section we give short descriptions of the revised definitions of

MDBS messages. The first group of messages are those between the host and the

controller and within the controller itself. These messages are shown in Fig-

ure 19.

Message type (1) Host Traffic Unit
Source Host

Destination : Request Preparation
Explanation The traffic unit represents a single request or

transaction from a user at the host machine.

Message type (2) Request Results
Source Post Processing

Destination : Host
Explanation : Contains the results for a request after being

gollected from all the backends and aggregated
if necessary.

Message type : (3) Number of Requests in a Transaction
Source : Request Preparation

Destination :Post Processing
Explanation : Request Preparation sends to Post Processing

thq number of requests in a traffic unit.
This enables Post Processing to determine whether the
processing of a traffic unit is complete.

Message type : (4) Aggregate Operators
Source : Request Preparation

Destination : Post Processing
Explanation : Request Preparation sends the aggregate

operators to Post Processing.

Message type : (5) Requests with Errors
Source : Request Preparation

Destination : Post Processing
Explanation : Requests with errors will be found in

Re uest Preparation by the Parser
= sent to the Post Processing
directly. Post Processinq wilI send
the requests with errors back to the host.

The next set of messages deals with the communication between the con-

troller and the Directory Management process within each backend. These mes-

sages can be found in Figure 20.

Message type : A:) Parsed Traffic Unit
Source : Request Preparation

Destination : Directory Management
Explanation : This is the prepared traffic unit sent by

Request Preparation.

-57-

I* IV 9 *

.9. - - - - -~ ~ P - -774- -- m . - 7
.~ : ' - . ~ . ~ - -

(2)()

THE CONTROL LER

(PROCESSINGPRAATO

P .UI

INSERT
INFORKATION
GENERATION

GET PCL PUT PCL

~J'.9Figure
19. Controller Related Messages

-58-

L i ;,I , i - i : 7 - , - . . '. . -- , riur, .7 ' ,; -~ - • - - - -. ,

THE CONTROLLER

POST REQUEST'PROCESSING PREPARATION

(9) (10) !INSERT (7) (8) (6)

,*" INFORMATION,
GENERATION (29)

GE PUT PL

PET PCL GT PCL

-(9)

CONCURRENCY

CONTROL

RECORDDIETR

PROCESS ING MAGMN

A BACKEND

Figure 20. REQP, 1G (Controller), and M (Backend) Related Messages

- 59

* .. °-
* . .

,

.. i;c type : (29) No More Generated Inserts
Source : Request Preparation

')t*ination : Directory Management
4:xp'anation : This message indicates that insert request for all

the records that have changed cluster as a result
of an update request have been generated and sent
to Directory Management.

Message type (7) New Descriptor Id
Source Insert Information Generation

Destination : Directory Management
Explanation : This message is a response to the Directory Management

request for a new descriptor id.

Meosage type : 18) Backend Number
Source insert Information Generation

Destination : Directory Mana-ement
Explanation : This message is used to specify which backend is to

insert a record.

Message type : (9) Cluster Id
Source : Directory Management

Destination : Insert Information Generation
Explanation : Directory Management sends a cluster id to Insert

Information Generation for an insert request. IIG
will decide where to do the insert.

Message type : (10) Request for New Descriptor Id
Source : Directory Management

Destination : Insert Informafion Generation
Explanation : When Directory Management has found a new descriptor it

is sent to Insert Information Generation
to generate an id.

The third group of messages deal with the flow from the Record Processing

pfocess in a backend to the Post Processing and Request Preparation processes

in the controller. Figure 21 shows the flow of these messages.

Message type : (11) Results of a Request from a Backend
Source : Record Processing

Destination : Post Processing
Explanation : This message contains the results that a specific backend

found for a request.

Message type : (12) Aggregate Operator Results from a Backend
Source : Record Processing

Destination : Post Processing
Explanation : When an agregate oertion needs.yt oe done on the

retrieved records, each backen wi1 do as much ag regation
as possible in the aggregate operation function of Record
Processing. This message carries those results to
Post Processing.

-60-

.

--I-. . . , ,nz, ." ,: .,m . :- ''% ,< - . " ,. ... '-.,v .i'..:."-".-"."-"- . -,

-. ~~
-.

.. 4

THE CONTROLLER

POSTREUS

PROCESSINGPR AAT0

INSERT

(4(11)
(13) INFORMATION

(12) (14) GENERATION

(29)

GET PCL
PUT PCL

PUT PCL
GET PCL

(12)(14)CONCURRENCY
(1)(29) FCONTROL

RECORD FDIRECTORY

PROCESSING
MANAGEMENTK A BACKEND

Figure 21. REQP, RECP and PP Related Messages

.4-
-61-

do

Message type : (13) Record that has Changed Cluster
Source : Record Processing

Destination : Reguest Preparation
Explanation : This message is a record which has changed cluster,

Request Preparation will prepare it as an insertion and
send it to the backends.

Message type : 129) No More Gqnerated Inserts
Source Record Processing

Destination : Reguest Preparation
Explanation : This message indicates that all the records that have

changed cluster as a result of an update request have
been sent to Request Preparation.

Message type : (14) Results of a Retrieve or Fetch Caused by an Update
Source : Record Processing

Destination : Request Preparation
Explanation : This message carries the inforipation from a retrieve or

fetch back to Request Preparation t9 gomplete an
update with type-III or type-IV modifier.

. The following descriptions are for messages between Directory Management

processes residing on different backends and between Directory Management and

Record Processing within a backend. These messages are shown in Figure 22.

Message type : (15) Descriptor Ids
Source : Directory Management

Destination : Directory Management (other backends)
Explanation : This messaqe contains the results of descriptor

search by Directory Management.

Message type : 116) Request and Disk Addresses
Source : Directory Management

Destination : Record Processing
Explanation : This message contains a request and disk addresses

for Record Processing to come up with the results for
the request.

Message type : (17) Changed Cluster Response
Source : Directory Management

Destination : Record Processing
Explanation : Directory Management uses this message to tell

Record Processing whether an updated record has changedcluster.

Message type : (29) No More Generated Inserts
Source : Directory Management

Deslination : Record ProcesqIng
Explanation : This message indicates that all insert requests

generated as a result of an update request have
been sent to Record Processing.

-62-

)(15)

' I
."V,

CONTROL(1)15

().-(

'at.

PRCSSN (31)' IW(15) 15

"'

Figure 22. DM and RECP Related Messages

-63"I

'.................,., -,-,a.......,._.....,:.-.........:...:.-,:

Message type : (18) Fetch

Source : Directory Management
Destination : Record Processing

-. Explanation : Fetch is a special retrieval of information for Request
S%. Preparation due to an update request with type-IV

rmodifier.

Message Type : (19) Old and New Values of Attribute being Modified
Source : Record Processing

Destination : Directory Management
Explanation : Record Processing uses this message to check whether a

record that has been updated has changed cluster.

Message Type : (31) An Update Request has Finished
Source : Record Processing

Destination : Directory Management
Explanation : Record Processing signals Directory Management

that an update request has finished execution.

The last set of messages are the Concurrency Control related messages.
These messages pass information from either Directory Management or Record

Processing to Concurrency Control. These are shown in Figure 23.

* Message Type (20) Type-C Attributes for a Traffic Unit
Source Directory Management

. Destination : Concurrency Control
Explanation : Concurrency Control takes the attributes in this

messaqe and determines when Descriptor Search for
an attribute can be performed.

Message Type : 21) Descriptor-id Groups for a Traffic Unit
Source Directory Management
Destination : Concurrency Control
Explanation : Concurrency Control takes the descriptor-id groups

in this message and determines when cluster Search
for a request can be performed.

Message Type : (22) Cluster Ids for a Traffic Unit
Source Directory Management
Destination : Concurrency Control
Explanation : Concurrency Control takes the cluster ids in this

message a determines when a request can continug with
Address Generation and the rest of request execution.

Message Type : (23) Release Attribute
Source : Directory Management
Destination : Concurrency Control
Explanation : Directory anaqement uses this messoge to signal

Concurrenicy Control that a request has per
ormea

D. Descriptor Search on an attribute, and the lock on
the attribute held by the request can be released.

- 64 -

- ' .°°. . . . * *S°--. S

'j b T ' ' , ' -"
'

- - . " -. -4 "
4 -

J. " * 4 W" r " - " r C r " r 4- *4rr .

PUT PCL GET PCL

qii(20) (21) (22) (23)
' CONCURP.E'CY

"£ CONTROL (4

COI /(26) (27) (25)

(30) (2)(31)

. 'PROCESSIN V- A GEMEINT

KI A BACKEND

,.4.

Figure 23. DM, RECP, and CC Related Messages

-65

'i'-

- - :' . -J , , . . " , ,,,. , . . ,- ...- ,,, . A BACKE- ND".°, ,". , .'.." ., , . . ,

. Message Type : (24) Release All the Attributes for an Insert
Sour e Directory Management
Destination : Concurrency Control
Explanation Directory management uses this message to signal

Concurrency Control that an insert request has
-"rfyrmed Descriptor Search on all the attributes, and
he OCs on the attributes held by the request can

be released.

Message Type (25) Release Descriptor-Id Groups
Source : Directory Management
Destination Concurrency Control
Explanation Directory Management uses this message to s.iqnal

Concurrency Control that an insert request has
performed Cluster Search for a request, and the lockson the descriptor-id groups held by the request can
be released.

Message Type (131) An Update Request Has Finished
Source . Directory Management
Destination : Concurrency Control
Explanation : Directory management uses this message to signal

Concurrency Control that an update request has
finished execution, and all the locks-held by the
request can be released.

Message Type : (26) Attribute Locked

Source Directory Management
Destination : Concurrency Cr trol
Explanation : Concurrency Cuttrol signals Directory Management

that an attribute is locked for a request, and
Descriptor Search can be performed.

- Message Type : (27) Descriptor-Id Groups Locked
Source : Directory Management
Destination : Concurrency Control
Explanation : Concurrency Control signals Directory Management

that the Descriptor-id groups needed by a request
are locked, and Cluster Search can De performed.

Message Type : 8) Cluster Ids Locked
Source : irectory Management
Destination : Concurrency Control
Explanation : Concurrency Control signals Directory Management that

the cluster ids needed by a request can continue with
address Generation and the rest of request execution.

Message Type : (23) Request Id of a Finished Request
Source : Record Processing
Destination : Concurrency Control _ u_ an..
Explanation : Record Processing si nai Cogcyrency Control thpt a

non-update request hs nisned execution, and the
locks on cluster ids held by the request can be
released.

-66-

-,- 5..-.
-

,5- -.o ." ." -" - - " -- ""..-- • 7

5.2. Request Execution in MDBS - Viewed Vie Message Passing

In this section, we describe the sequence of actions for a request as it

moves through MDBS. The sequence of actions will be described in terms of the

types of messages passed between the MDBS processes: Request Preparation

(REQP), Insert Information Generation (IIG), Post Processing (PP), Directory

Management (DM), Record Processing (RECP) and Concurrency Control (CC). The

order in which messages are passed will be denoted alphabetically ('a' is

first). The digit following the ordering letter will be the message number as

shown in Figure 18. We examine the four types of requests, insert, delete,

retrieve, and update.

5.2.1. Sequence of Actions for an Insert Request

The sequence of actions for an insert request is shown in Figure 24. The

traffic unit (al) comes into REQP from the host carrying an insert request.

REQP sends to PP the number of requests in the traffic unit (b3). After

preparation, the formatted request is sent to DM from REQP (c6). OM sends the

type-C attributes needed by the request to CC (d20). Once an attribute is

locked, and Descriptor Search can be performed, CC signals DM (e26). DM will

then perform Descriptor Search. From DM, descriptor ids for the request will

be sent to the other backends in the MDBS system (f15). DM also signals CC to

release the locks on attributes (g24). The descriptor ids found by the other

backends will be received by DM (h15). OM now sends the descriptor-id group

for the request to CC (i21). Once the descriptor-id group is locked and Clus-

ter Search can be performed, CC signals DM (j27). DM will then perform Clus-

A ter Search. To determine where the insert will occur, DM will send the insert

cluster id to IIG (k9). Once the backend has been selected, IIG will send the

backend number to DM (m8). DM updates its directory tables if needed, and

signals CC to release the lock held by the request on the descriptor-id group

(n25). DM will send the insert cluster id to CC (o22). CC will respond to DM

when the insert request can proceed with Address Generation and the rest of

request execution (p28). With the go ahead from CC, DM will perform Address

Generation and send RECP the request and its required disk address (q16).

After the insert has occurred, RECP will notify CC that the request is done

(r30), followed by a message to PP that the request has completed (sll). PP

will finish the processing by sending a results message to the host (t2).

.

-67-

%7 al

THE CONTROLLER \

POST b EUS

-~PROCESSING PREPARAT ION

'SER

f15 h15

"I-

liiil
i gur 24. Sequ nc REC of Mesage focn6netReus

- ~l 68 -o

COTO 1
i 2 1,

*5** 5 5 5 **. . ' -... '- 5.8

p .5 . S * C- - . ,.

p28. S

, . ..

5.2.2. Sequence of Actions for a Delete Request

The sequence of actions for a delete request is shown in Figure 25. A

traffic unit is sent to REQP from the host containing the delete request (al).

REQP notifies PP of the number of requests in the traffic unit (b3). Next,

REQP sends the request down to DM (c6). DM sends the type-C attributes needed

by the request to CC(d20). Once an attribute is locked and Descriptor Search

can be performed, CC signals DM (e26). DM performs Descriptor Search and sig-

nals CC to release the lock on the attribute (f23). The descriptor ids for the

request are next sent to the other backends from DM (g15). The other backends

respond with the descriptor ids they have found (hi5). DM sends the

descriptor-id groups for the request to CC (i21). Once the descriptor-id
groups are locked and Cluster Search can be performed, CC signals DM (j27). OM

performs Cluster Search and signals CC to release the locks on the
descriptor-id groups (k25). DM will next send the cluster ids for the delete

request to CC (m22). Once the cluster ids are locked and the request can con-

tinue with Address Generation and the rest of request execution, CC signals DM
(n28). DM will then perform Address Generation and send to RECP the address
and the request (p16). After RECP has performed the delete request, it will

notify CC that the request is through (p30). PP will then receive a results

message from RECP telling it that the request is done (qll). PP will then

notify the host with a results message (r2).

5.2.3. Sequence of Actions for a Retrieve Request with Aggregate Operator

The sequence of actions for a retrieve request is shown in Figure 26.

First the retrieve request comes to REQP from the host (al). REQP sends two

messages to PP: the number of requests in the transaction (b3) and the aggre-

gate operator of the request (c4). The third message sent by REQP is the
parsed traffic unit which goes to DM in the backends (d6). DM sends the

type-C attributes needed by the request to CC (e20). Once an attribute is

locked and CC can be performed, CC signals DM (f26). DM will then perform

Descriptor Search and signal CC to release the lock on that attribute (g23).
DM will send the descriptor ids for the request to the other backends (h15).

The DM processes in the other backends will send their descriptor ids to the

DM process residing in this backend (iM5). DM now sends the descriptor-id

groups for the retrieve request to CC (j21). Once the descriptor-id groups

are locked and Cluster Search can be performed, CC signals ONM (k27). OM will

-69-

'. -. _'.--

*r al ---- *' -' .

THE CONTROLLER

POSTREUS

PROCESSING PREPARATIONI

ISERT
q11 INFORMIAT10N c6

GENERATION

PrGET PCL PUT PCL

g1 5 hI15

Fiur 5.Seuncs fMesae fr elteRqus

PU PL ET.C

4 -7 0 -

A
4:

q1 p3 *OCREC --------------------------3

s21 a1

THE CONTROLLER

ffPOST
bc

EUS

PROCESSING PREPARATION

INSERT

r12 INFORMATION d6
GENERATION

GE CL PUTPC

h15i1

r12 30 CONCURRENCY

RECORD

PROCESSING MNGMN

A BACKEND

.1 Figure 26. Sequence of Messages for a Retrieve Request
with Aggregate Operations

.g~. - 71 -

-.. -# - -

then perform Cluster Search and signal CC to release the locks on the

descriptor-id groups (m25). Next, DM will send the cluster ids for the

retrieval to CC (n22). Once the cluster ids are locked, and the request can

proceed with Address Generation and the rest of the request execution, CC sig-

nals DM (o28). DM will then perform Address Generation and send the retrieve

request and the addresses to RECP (p16). Once the retrieval request has exe-

cuted properly, RECP will tell CC that the request is done and the locks on

the cluster ids can be release (q30). After the retrieval results have been

aggregated in the backend, that result will be sent to PP for further aggrega-
tion (r12). When PP is done, the final results will be sent to the host (s2).

5.2.4. Sequence of Actions for an Update Request Causing a Change in Clus-

P ter

The sequence of actions for an update request that causes a record to

change cluster is shown in Figure 27. This request is processed in two parts.

First, after processing the update, it is determined that a record has changed

cluster. Then, an insert is generated to actually store the new record. As in

the previous examples, we will go through the complete execution of this

request.

The host sends the update request to REQP (al). REQP follows through by

formatting the request and sending PP the number of requests in the transac-

tion (b3). DM also receives a message from REQP, the parsed traffic unit (c6).

DM sends the type-C attributes needed by the request to CC (d20). Once an

attribute is locked and Descriptor Search can be performed, CC signals DM

(e29). DM will then perform Descriptor Search and send a message to CC to

,.-'. release the lock on the attribute (f23). The DM in each backend will exchange

descriptor ids with each of the other backends (g15 and h15). DM sends the

a,-... descriptor-id groups needed by the update request to CC (i21). Once the

descriptor-id groups are locked and Cluster Search can be performed, CC sig-V..'
nals DM (j27). DM will then perform Cluster Search. DM will send the cluster

Cids to CC to check if the request can continue with Address Generation and the

rest of request execution (k22). Once CC responds to DM that the request can

go through (m28), DM will generate the disk addresses and send the request as

well as the addresses to RECP(nI6). When RECP retrieves the old values of the

attribute being modified by the update, it will then send these old values and

the new values to DM to check for records that have changed cluster (o19). A

. -72 -

777 C' "

M2~ al

I THE CONTROLLER

I' b3OEQES

PROCESINGPREPARAT ION

L 9 IN FO R.MATION D8c6
GENER.ATION s29

u6

g15, x15h15,zl5

d20,f23,c6

q1 ~ 3 v2-2 1

02%

LRRE.

... 9 13 CO-REC

reply will be sent to RECP from DM stating (for our example) that the update

does cause a record to change cluster (p17). The change of cluster by a record

requires an insert, therefore RECP will send the record that has changed clus-

ter to REQP (q13). REQP will then generate an insert request. After sending

all the updated records that have changed cluster to REQP, REQP sends a mes-

sage to REQP (r29) indicating that there are no more changed-cluster records

at this backend. (This message and the next message are needed to insure that

the updated records are not inserted in the backends before the update

requested has finished updating all the records. If the changed-cluster

.'N- records are inserted too early, the update request may update some of them

again.) After receiving the message (r29) from RECP in all the backends and

after generating all the required insert requests, REQP sends a message to DM

indicating that there will not be any more insert requests for this update

request (s29). After receiving the message (s29) and performing directory-
management processing for all the generated insert requests, DM sends a mes-

sage to RECP indicating that there will not be any more insert request for

this update request (t29). (RECP needs this message to determine when the

update request is completely done. The update request is completely done when
-2:* all the insert requests caused by it are done.)

Let us now describe how the generated insert is processed. The execution

of this request proceeds as other insert requests. REQP sends DM the parsed

traffic unit for the insert (u6). DM sends the type-C attributes needed by the

insert request to CC (v20). Once an attribute is locked and Descriptor Search

can be performed, CC signals DM (w26). DM will then perform Descriptor

Search. From the DM, descriptor ids for the request will be sent to the other

backends in the MDBS system (x15). DM also signals CC to release the locks on

attributes (y24). The descriptor ids found by the other backends will be

.- received by DM (z15). DM now sends the descriptor-id group for the request to

.CC (A21). (Note that we are now using capital letters for sequencing.) Once

the descriptor-id group is locked and Cluster Search can be performed, CC sig-

nals DM (B27). DM will then perform Cluster Search. To determine where the

insert will occur, DM will send the insert cluster id to IIG (C9). Once the
.°

backend has been selected, IIG will send the backend number to DM (D8). DM

updates its directory tables if needed, and signals CC to release the lock

held by the insert request on the descriptor-id group (E25). DM will send the
insert cluster id to CC (F22). CC will respond to DM when the insert request

- 74 -

can proceed with Address Generation and the rest of the request execution

(G28). With the go ahead from CC, DM will perform Address Generation and send

RECP the request and its required disk address (H16). After the insert has

occurred. RECP will notify CC that the insert request is done (130).

After executing ali the insert requests caused by the update request,

RECP signals DM that the update request is completely done (J31). DM will free

the space used by the update request and signal CC that the update request has

finished (31). RECP also sends the results of the update request to PP (LIl)

and PP notifies the host that the update has completed (M2).

-7.

. V .o

""- 75 -

6. CONCLUSIONS AND FUTURE PLANS

This report concludes the series of reports [Kerr82, He82, Boyn83] on

the implementation of MIDBS. We have finished the design, coding, implementa-

tion and testing of Version F which is the target version envisioned from the

outset. Thus we can begin the next phases of experimentation, specifically,

design verification and performance evaluation. To support these new phases

of experimentation, we need to increase the number of backends in the system

to, at least, six. The issues involving the hardware reconfiguration and

expansion of MDBS are discussed in Section 6.1.

Additionally, we are investigating a security mechanism and language

interfaces for relational and hierarchical data manipulation languages. These

topics, along with the design verification and performance evaluation issues,

are examined in Section 6.2. Finally, Section 6.3 contains a long-range goal

of the Laboratory for Database Systems Research, i.e., the development of a

general methodology for benchmarking database machines and database software

systems.

6.1. Hardware Reconfiguration for MDBS

The current hardware configuration of MDBS consists of a VAX-11/780 run-

ning as the controller and two PDP-ll/44s running as backends. Intercomputer

communication is supported by three parallel communication links (PCL-IJBs).

To increase the number of backends to six, we would need to purchase four more

PDP-lI/44s and four more PCL-llBs. However, this has not been our original

plan. Our plan was to use the Ethernet-like communications link and the smal-

lest and cheapest minis which can support hard disks for our configuration. As

always in the computer field, the intended hardware was not available in 1980.

Since then we have used more powerful hardware, the PDP-l1/44s and VAX-11/780

and more awkward hardware such as the PCL-llBs. Thus, we are now investigating

the possibility of replacing our current configuration with newer 3nd more

appropriate hardware. In particular, we are thinking of replacing our back-

ends with the Digital LSI-11 series, either the 11/23, the 11/23+, or the

11/73. The gain is in cost and service. The cost of the LSI-11/23 or LSI-

11/23+ is about half the cost of a PDP-Il/44. The cost of the LSI-11/73 is

about two-thirds the cost of a PDP-l1/44. Since the software is portable,

there is no problem in down-loading the existing software onto any of these

three machines.

-76-

We are also considering a change in the communications hardware. Mhen

the implementation of MDBS began, the technology for local-area networks,

e.g., Ethernet [Metc76I, was not available. The replacement of the PCL

hardware with an Ethernet or Ethernet-compatible network would standardize the

communications hardware. Additionally, unlike Ethernet, the PCL is not a

broadcast bus. We have required a broadcast bus for N DBS. In the current

environment, when the controller needs to broadcast a message to all the back-

* ends, it must send the message separately to each backend. In other words, if

there are two backends, the controller sends two messages. Thus, the

message-passing overhead increases as the number of backends increases. An

Ethernet will eliminate this overhead.

6.2. New Research

* The new research on MDBS involves three major areas, a security mechan-

ism, language interfaces to support the relational and hierarchical data mani-

pulation languages, and the performance evaluation of the MDBS.

6.2.1. A Security Mechanism

Since security is an integral part of a database system, the design of a

security mechanism is mandated. The design considerations of a security

mechanism consists of two parts. First, the level(s), known as granule(s), at

which the security control is applied must be determined. In MD8S there are

four possibilities: the attribute level, the descriptor level, the cluster

level, and the record level. Second, given the level(s) at which security is

defined, the security mechanism is then specified. This is not an easy task,

since the directory information about the levels changes dynamically when a

new type-C descriptor or a new cluster is created.

6.2.2. Language Interfaces

There are three separate projects underway involving language interfaces.

In designing language interfaces, we are providing the user access to MDBS

using a variety of data manipulation languages. The series of papers [Bane77,

Bane78, Bane8O] demonstrated that a relational, hierarchical or network data-

base can be transformed into an attribute-based database. Thus it is reason-

able to design a language interface which maps a given data manipulation

language into the attribute-based query language, so that the user may use the

given language on the transformed database. One project involves the design

5;' -77-

of a language interface for the relational query language, SQL [Astr76]. A

second project involves the design of a language interface for DL/I of I MS

[McGe77]. The third project is considering the various algorithms which can

be used to implement the sort and join operations in the attribute-based sys-

.,- tem for the relational language interface.

* 6.2.3. Performance Evaluation

There are two projects dealing with the performance evaluation of MDBS.

The internal performance evaluation project is measuring the execution times

of the modules of the backend. These measurements include the time to process

a particular message, the disk I/O time, the intra-computer and inter-computer

message passing times, the process switch time, etc. The external performance

evaluation project is measuring the throughput of the system. The throughput

of MDBS is defined as the average number of user requests executed by the sys-

tem in a second [Hsia8la]. The throughput of the system can be obtained for

the four primary operations in MDBS.

6.3. What's Next

The work on performance evaluation and the relational and hierarchical

language interfaces leads toward the ultimate goal of our research efforts:

the specification of a general methodology to benchmark database machines and

database software systems. We intend to extend the earlier work on benchmark-

ing database machines and software systems which support the relational model

[Stra84], to benchmark systems and machines based on the hierarchical and net-

work data models.

Additionally, we intend to permit the comparison of two or more database

systems. The benefit to such an approach is the ability to easily benchmark

and compare similar and dissimilar database systems, i.e., a relative com-

parison. However, this approach does not preclude absolute comparison where

only a single system has to be benchmarked. In this case, the benchmarks are

"* of course written in the given data manipulation language.

-78-

_Ile" " e.:e . "' ' * . - - - "", < ,- ' " "" " .- "" . ' " " ." - ""• - ' " " " " " - ."

REFERENCES

[Astr76] Astrahan, M. M., et al. "System R: a relational approach to data
management," ACM Transactions on 6 atabase Systems 1:2, pp. 97-137.

[Bane771 Banerjee, J. Hsiao, D. K., and Kerr, D. S., "DBC Software Require-
ments for Supporting Network Databases," Technical Report, OSU-CISRC-TR-77-4,
The Ohio State University, Columbus, Ohio, June 1977.
Bane78] Baner ee, J. and Hsiao D K "Concepts and Capabilities of a

se Compuer." ACM Transactions on Database Systems, Vol. 4, No. 1, pp.

347-384, Decefmber 1978.

[Bane801 Banerjee, J., Hsiao, D. K., and Ng, F "Database Transformation,
Query Translation and Performance Analvsis of a 6 atobase Computer in Support-
ing Hierarchical Database Management," IEEE Transactions on S ttware Engineer-
ing, March 1980.

[Boyn83] Bone, R., et al., "The Implementation of a Multi-Backend Database
System (MDBS): Part III - The Message-Oriented Version with Concurrency Con-
trol and Secondary-Memory-Based Directory Management " Technical Report,
NPS-52-83-003, Naval Postgraduate School, Monterey, California, March 1983.

Sdate83] Date, C. J., An Introduction to Database Systems, Volume II,
ddison-Wesley, 1983.

[DEq79a] "PCL1-B Parallel Communication Link Differential TDM Bus," Digital
Equipment Corp., Maynard, Mass., 1979.

[He82] He, X et al , "The Implementation of a Multi-Backend Databasj System
MDBSI: Part-I - The First Prototype MDBS and the Software Engineering
xperience," Technical Report, NPS-52.82-008, Naval Postgraduate School, Mon-
terey, California, July 1982.

[Hsia8la] Hsiao D.K. and Menon, M.J., "Design and Analysis of a
Multi-Backend 6atabase Sttem for Performance Improvement, Functionality
Expansion and Capacity Growth (Part I)," Technical Report, OSU-CISRC-TR-81-
7, The Ohio State University, Columbus, Ohio, July 1981.

[Hsia8lb] Hsiao, D.K. and Menon, M.J., "Design and Analysis of a
Multi-Backend Database System for performance Improvement Functionality
Expansion and Capacity Growth (Part II)," Technical Report, (SU-CISRC-TR-81-
8, The Ohio State University, Columbus, Ohio, August 1981.

Kerr82] Kerr, D.S., et al., "The Implementation of a Multi-Backend Database
ystem (MDBS): Part I - Software Engineerinq Strategies and Efforts Towards a

Prototype MDBS," Technical Report OSU-CISRC-TR-82-I, The Ohio State Univer-
sity, Columbus, Ohio, January 198.

/McGe77l McGee, W. C., "The IMS/VS System," IBM System Journal 16, No. 2,
une 1977.

[Metc76] Metcalfe, R. M., and Boggs, D. R., "Ethernet:Distributed Packet
witchinq for Local Computer Networks," Communications of the ACM, vol. 19,
pp. 395-404, July 1976.

[Stra84] Strawser P. R., "A Methodology for Benchmarking Relational Database
Machines," Ph. D. 6issertation, The Ohio State University, 1984.

(Ullm82] Ullman, J. D., Principles of Database Systems, Computer Science
Press, 1982.

979

- 79 -

&-% % ' % ' ."- .'%'J%' .'- - • -". " " • • . . . - •. . I. -% . ". . .'

1.* 747.. 7777777.'

APPENDIX A

HOW TO READ AND FOLLOW THE PROGRAM SPECIFICATIONS

The appendices in this series have contained the detailed design of MDBS.

In Appendix B, the programs for the directory management concurrency control

are described and specified. In Appendix C, the programs for directory

management using secondary memory are described and specified. These programs

-represent those parts of MDBS that have been newly designed and redesigned,

since the first three reports in this series were written.

A.1 Parts within an Appendix

Each appendix begins with a introduction which outlines the major com-

ponents of the design. For example, the design of the controller subsystem,

presented in [He82], consisted of three major parts: request preparation,

insert information generation and post processing. The design of a backend

subsystem also consists of three major parts: directory management, record

processing and concurrency control. Primary-memory-based directory management

and record processing, were presented in the previous reports. The third

part, namely, concurrency control, in presented in Appendix B of this report.

Finally, the revisions for secondary-memory-based directory management are

presented in Appendix C.

J-;.

A.2 The Format of a Part

In each part, we provide the following documentation elements:

(1) Title of the part,

a (2) Name of the design,

(3) Name of the designer,

(4) Date the design was first submitted,

(5) Dates of design modifications,

(6) Statements of the design purpose, and of the input and output

requirements,

(7) Formal specifications of the input and output, if necessary,

(8) Procedure names used in the design,

(9) Jackson chart of the design, if necessary,

(10) Data structures used in the design,
4..s

~- 80 -

(11) Program specification of the design.

A.3 Documentation Techniques for a Part

In the previous section, we listed the various documentation elements.

They are used to describe a design. Documentation elements I through 5 are

written in English phrases. Document element 6 is written in prose. On the

other hand, document elements 7 through 11 can be expressed more effectively

using other means. Specifically, we have used Backus-Naur form (BNF) for

writing the specifications in document element 7.

The procedure names of document element 8 are shown in a program hierar-

chy. The use of the hierarchy makes clear the calling sequences of the pro-

cedures named. The data structures of documentation element 10 are specified

in either the system specification language (SSL) or in the C programming

language. In documentation element 11, the procedures, themselves, are speci-

fied in SSL.

Except for the programing team that writes the procedures, other teams

will usually not be interested in the internal logic of the procedures. Con-

sequently, they need only know the higher-level specifications of the pro-

cedures. The SSL employed in MDBS is an ideal specification language for

revealing the design of the procedures from a top-to-bottom-and-layer-to-layer

way. It also works well with the hierarchical organization of procedures.

.'8

a...

- 81 -

!, - °.

APPENDIX B

THE SSL SPECIFICATIONS FOR DIRECTORY MANAGEMENT CONCURRENCY CONTROL

The system specification for directory management concurrency control is

given in this appendix.

I Directory Management Concurrency Control
Design: :DM CC

3 D.esigners : A.Orooji D S Kerr
4 Date : July 24, 1983 *r
5 (5LModified : December 28,1983
6 Purpose :/
le directory data, namely the descriptor-to-descriptor-id

/* tablefDDIT) and he cluster-definition table(CDT), may be */
/* modified durinq request execution. Thus before descriptor search(DS) *
/* can access DDIT or cluster search(CS) can access CDr, appropriate
/* locks must be obtained.

There are two types of locks: READ and WRITE. A type-C attribute */
/* must be locked before a request can perform DS on that-attribute. ,/
"* To avoid deadlock the type-C attributes are sorted before being */

/* sent to DM CC.
All de9criptor-id-groups needed by a request must be locked before */

/* the request can perform CS. Each descriptor-id group needed by a
1* request is sorted (before being sent to DM CC), and all the
/* descriptor-id groups needed by a request are sorted. *

~82

'4'

4.., -.-

(8) Procedure Hierarchy for DMCC

T
DMCC DM CC R$ DM CC R$

intt megsag"e Type.

NewTraf Comptete Insert UpdateUnit Complefe Finished

Trafric ReTea-se Ife pDM CCR$
Unit Attr All F-IishedInit- Attr Rid

MI CR$Release

-~~~ NewTraf Cr~t
Unit co t

CSCC DM CC R$
Traffic_ ReTea~se
Unit DidGroups

______ nit-

* i ecT roups -

I Inse-Ft+
UV Upate CSCC
ARibeas Rele-ase

AttriutesDidGroups

E CC Ty
Release CS Tr
Attr td-

Start

DS Try_
tor Re uest

I Locl<7
DSL conversion

Lock-
Conversion CSCC

Lock-
Conversion

-83-

,,L . 4

(10) Data Structures

List of abbreviations:
ATUT - attribute-to-traffic-unit table
CS - cluster search
IOM - directory management
DM CC - directory management concurrency control
DS - descriptor search
-.T - traffic unit
-TUAT - traffic-unit-to-attribute table

"TJUDIGT - traffic-unit-to-descriptor-id-groups table

Traffic-Unit-to-Attribute Table (TUAT):

This table contains a list of traffic units and the type-C attributes
needed by the.requests in the traffic units. A type-C attribute needed
•y a request is locke before Descriptor Search (a tribute-being-modified
in an update request is also locked if it is type C).

<- TJs that arrived earlier, TUs that arrived later ->

~~~I TU1 I -> I T!J2 I -> I TU3 I -- .
- II I

V V

V

,I R 1 -> I R2 I -> I R3 I ->

I I

Attrl Attr2 Attr3I:-'/.R/W -> R/W -> R/W >..

Attribute-to-Traffic-Unit Table (ATUT):

This table has the same information as TUAT, but it is based on
attributes.

.Attl TUlI IT 2 T

-a- "I V V

T Attr2 I ->

-84-

,." .. , , - . - . . ........... ,.......



Traffic-Unit-Descriptor-Id-Groups Table (TUDIGT):

This table contains a list of traffic units and the desgriptor-id groups
needed by the requests in the traffic units. The descriptor-id groups
needed by a request are locked before Cluster Search.

<- TUs that finished DS earlier, TUs that finished DS later ->

TUl I --- > I TU2 I - TU3 I >

V V

V
• .. ]R1 --- > 7 R2 J-> I R3 I-- .

-l I I

V V
~V

desc-id, - desc-id -- > desc-id ->0 roup2 group3
IBU/BU u/BO I9U/BU

RAq R/W I R/W I

(11) Program Specifications

1 task() /* DMCC (directory management concurrency control) */
2 . /* do initialization */
3 DM CC init();
4 whTle- TRUE
5

- .'-/ qt the next message for DM CC */L "l 6 DM CCR$Message(); -
• , /*~--gl the message type *

7 DM CCR$Type(),
9
10 case DSNewTU: /* a new traffic unit and the type-C

- -. attribVtes needed by the requests in it */
11 DSCC NewTrafUnito;
12 breaST;

13 case CS NewTU: /* a new traffic unit and the de:criptor-id
qroups needed by the requests in it */

14 CSCC NewTraf!JnitO;
15 brea~t;

16 case DSReleaseAttr: /* a type-C attribute needed in DS is-- released */
17 DSCC Completeo;
18 breaX;

19 case DS InsertReleaseAllAttrs: /* DS for insert releasinq all
the typeC attributes *7

20 DSCC InsertComplete(;
21 breast;

V'.

- 85 -

-r % ',,.;. , ',, ', ,,o ,.., ., ., .; .,- , .. , , .. ..,. .., . . . . ... . - - . ,. .



- . .-.3 1: 
7

22 case CS ReleaseDidGroups: /* the descriptor-id qroups needed
in CS are released "7

23 CSCC Complete (;
24 breat;

25 case UpdateFinished: /* An update is finished, so release
update attribute(if any),
d;scriptor-id groups and cluster */26CC UpdateFinished ();

27 brak;

28 }/* end switch */

29/* end while */

30 }/* end main() */

".'["26.1 CC U dateFinishedo(2/6 An update is finished, so release update attribute(if any), *
26.2 /* descriptor-id groups and clusters */

/* receive the request id */

% 26.3 DM CC R$UpdateFinishedRid( FinishedRid );

/* find and remove update attribute, if any, from TUAT & ATUT */26.4 DSCCInsertUdateReleaseAttributesl FinishedRid );
/* find and remove all descriptor-id roups from TUDIGT */

26.5 CSCCReleaseDidGroups( FinishedRid );

/* find and remove all cluster-ids from TJCT and CTUT */
/* (included here only for completeness this is actually */
/* part of database concurrency control, NOT directory/* management concurrency control)*/

*.---, 26.6 1 /* end CCUpdateFinished */

11.1 DSCC NewTrafUnit()
/. This routine is used when a new traffic unit and the type-C *77* attributes needed by the requests in it are sent from DM to */
/.CD . *C* ThTs routine adds the traffic unit to TUAT and ATUT, and it */

1. tries to start DS. */

/* The message contains a traffic unit and the type-C attributes
needed by the requests in it. The message is

{ [ridl,(attrli, attrlj, ..
rid2, (attr2i, attr23,-**. .. }/

/* Receive the traffic unit and the type-C attributes. */
/* enter the requests an the type-C ittributes needed by them

into TUAT and ATUT. n7
11.3 DSTrafficUnitInit( FirstRid , FirstAttribute );

/* Tryto convert locks on as many attributes as possible. */
11.4 1STrytoStart( FirstRid , FirstAttribute );

-..-. 11.5 }/* end DSCC NewTrafUnit */

- 86 -

,% " - -. •.- * -.-. . ."-".- . . . .-t-. - . ' .. ' . .-. . .". .- *- -° -% S. " - -% '



17.1 DSCC Complete ()
- /* a type-C attribute needed in DS is released */

17.2 { /* Receive the request id and the type-C attribute. */

17.3 DM CC R$ReleaseAttr( ReleasingRid ReleasedAttr);
/* RemovJ tife attribute from TUAT and A+UT,

and try to start DS for 9ther request(s).
17.4 DSCCReleaseAttr( ReleasingRid, ReleasedAttr);

.[ 17.5 } /* end DSCCComplete */

20.1 DSCC InsertComplete()
/* DS for insert is releasing all the type-C attributes */

20.2 /* Receive the request id. */

20.3 DM CC R$InsertAllAttrRelease( ReleasingRid );
/* Release-the attributes. */

*" 20.4 DSCC InsertUpdateReleaseAttrs( ReleasingRid );

20.5 1 /* end DSCCInsertComplete */

11.3.1 DS Traffic Unit Irit( FirstRid , FirstAttr
/* Setup TTAT and ATUT entries for the new traffic unit. Return */
/* pointers to the traffic unit, 1st request, and the position
/* of the first attribute for that request.

11.3.2 Receive he traffic unit and the type-C attributes. */

11.3.3 DMCCR$Attrs( ...

/* Enter the requests and the type-C attributes needed by them into
T"AT and ATUT. */

11.3.4 for each request in the traffic unit
11.3.5 {
11.3.6 fo each attribute needed by this request• " ii1.3.7{
11.3.8 add an entry to THAT;

/* the entry contains the following information
attribute name or id
mode (R/W) */

11.3.9 add an entry to ATUT;
/* the entry contains the following information

rid
mode (R/W)*/

11.3.10 }/* end for */

11.3.11 }/* end for */

11.3.12 return first request id and first attribute

11.3.13 } /* end DS Traffic Unit Init */

.2.,

.- °7-

. . . . . . . . . .



AD-Ai4O 874 THE IMPLEMENTATION OF A MULTI-BACKEND DATABASE SYSTEM 2/2
(MOBS) PART 4 THE P .(L) NAVAIL POSTGRADUATE SCHOOL
N ONTEREY CA S A DEMURJIRN ET RL. FEB 84 NPS52-84-005

UNCLRSSIFIED F/G 9/2 NLEEEEEEEEEEIIEIEEEEEEEEEEEE-



1.30

111111.25Oil,. 111.

W.I

am LM4.0



C=l1.4 or B.8
C.1 DS Try to Start( FirstRid , FirstAttribute

/* Try-to convert locks on aq many attributes as psible. Fr each
request in the traffic unit, w start; with their$.t attribute

,.- neeedC by the request and continue with other attributes needed

C.2 by the request.

C.3 for each request in the traffic unit

C.5 rid = request id of the request in the traffic unit;
C.6 TUAT Attr tr = pointer to te first attribute (TUAT entry) needed

by this request;
C.7 MoreAttrs = TRUE;
C.8 ConvertFlag = RUE
C.9 while ( MoreAttrs

/* try to convert lock on the next attribute needed by this
request */

C.11 ConvertFlaq = DSCC LockConversion( rid, TUAT AttrPtr);
C if ConvertFlag -

C.14 send a message to DM to start DS on the attribute
UAT AttrPtr->attr for the request rid;

C.15 set TUAT AttrPtr to point to the next attribute (TUAT entry)
needed by this request. If it was last attribute for
this request, set 4oreAttrs to FALSE to indicate there
are no more attributes to convert lock;

C.16 }/* end if */

C.17 }/* end while */

C.18 }/* end for */

C.19 }/* end DSTry_to_Start */

B = A.5 or 17.4
B.l DSCC ReleaseAttr( ReleasingRid, ReleasedAttr)

/ This routine is used when DM sends a message to DM CC signaling
that a request has finished DS on an attribute, and the attribute
can now b' released.
This routine releases the attribute and tries to start DS for
other requests that are waiting for the attribute. */B.2

B.3 remove the attribute entry from TJAT and ATUT;
/* try to start DS for other requests */

B.4 for each request following the request ReleasingRid in ATUT for the
attribute ReleasedAttr

B'6 rid = request id of the next request in ATJT for the attribute;
B.7 TUAT AttrPtr = pointer to the attribute ReleasedAttr ('UAT entry)

which is needed by the req.uest rid;
/* Try to convert lockq on as many attributgs au possible We

start with the attribute RelealedAttr which s needed by the
request rid and continue with other attributes needed by the
request rid.
We stop when we et to an attribute that we cannot lock. */

B.8 -S_Try_to_Statt( rid, TUAT AttrPtr );

8.9 }1* end for *I

B.10 }/* end DSCCReleaseAttr */

-88-

, V,:..;;; -- :<.-.. -:.,2 ?;';< - -..-... , ,,..< ..... .,



A - 20.4 or 26.4
A.1 DBCC InsertUpdateReleaseAttributes. FinishedRid
A2* find and remove update attribute, if any, from TUAT & ATUT */
A,3 for each type-C attribute

A.4 /* remove the attribute from TJAT & ATUT and try to start DS */
A.5 0SCC ReleaseAttr( FinisheRid , Attribute

A.6 } /* end for */
N!-: A.7 ) /* end DSCCInsertUpdateReleaseAttributes */

C.11.1 D6CC LockConversion( rid, TUAT AttrPtr a
/* This routine tries to coTmert loc on attribute TUAT AttrPtr->attr
for request rid. It returns TRUE if the lock is converted, FALSE

C.11.3 I otherwise. */

C.11. ATUT_ReqPtr = pointer to the request rid in ATUT for
attribute TUAT AttrPtr->attr

C.11.4 if TUAT AttrPtr->mode = W thenC.11.5 {/* tre request is asking for write access;
the access can be granted only if

(1) the request is the first request on the list
i.e., no other request is using the attribute

or (2) the request is the FIRST insert-caused-by-an-update
that is the first request on the list. */

C.11.6 if first request on ATUT for attribute TUAT AttrPtr->attr
C.11.7 {/* Case (1): access grante --
C,11.8 return(TRUE);c.11.9

C.11.10 else if FIRST insert--caused-by-update & update is first
C.11.11 {/* Case (2): access granted */
C.11.12 return (TRUE);
C.11.13 }

C.11.14 else
C.11.15 access cannot be granted */
C.11.16 return(FALSE);

C.11.17 ,
. e/ end then part of if TUAT AttrPtr->mode =W *

C.11.20 /* the request is asking for read access- the access can be
granted only if all the earlier requests on ATUT are also
read accessing */

C.11.21 for all the earlier entries in ATUT for the attribute
2TUAT AttrPtr->attr• -I- C.l1.22 {ATT-

C.11.23 ATUT Ptr = pointer to the next entry in ATUT for the attribute
IAT AttrPtr->attr

C.11.24 if ATtT Ptr->mode = W
C.11.25 {/* aucess cannot be granted */
C.11.26 return4 FALSE);
C.11.27 }/* end if '/
C.11.28 }/* end for */

/* all the earlier requests are also read accessing, so the
access can be granted */

C.11.29 return (TRUE);

C.11.30 }/* end else part */
C.11.31 }/* end DSCCLockConversion */

-89-



14.1 CSO Newrraf Jnit (
1. This routine is used when a new traffic unit and the

descriptor- d groups needed by the requests in it are
sent from DM to DM CC. This routine adds the traffic
unit to TUDIGT, anf it tries to start CS. */

14.23~ /* Get the tfaffic unit and stor4 it. */
14.3 CSTraffic_UnitInit( FirstRid );

/* Try to convert locks on as many descriptor-id groups
as possible */

14.4 CTry toSart( Frstid );

14.5 }/* end CSCC NewTrafUnit */

23.1 CSCC Complete()
23.2 f _ * the descriptor-id groups needed in CS are released */
23.2 p / receive the request id */
23.3 DM CC R$ReleaseDidGroups( ReleasingRid);

/* removT tTe descriptor-id grous from TUDIGT,
and try to start *7

23.4 CSCCReleasDidGroups( ReleasingRid);

23.5 }/* end CSCCcomplet-e */

14.3.1 CS Traffic Unit Init( FirstRid )
/* Get the traffic unit and store it,. .
/* The me e contains a traffic ipnt and the.descriptor-id groups

needed sy the requests in it. ine message is
{ desc-id groupli, desc-id groupl . ,

[rid2,(desc-id group2i, desc-id group2j, . ,• . . "

/* receive the traffic unit and the descriptor-id groups */
14.3.2 EMCC R$DescIdGroups( ... );

/* enter the requests and their corresponding descriptor-id groups
into TUDIGT "/

14.3.1 3 for each request in the traffic unit
14. 4
14.3.5 for each descriptor-id group needed by this request
14.3.6 f
14.3.7 add an entry to TUDIGT;

/* the entry con ains the following information
dscr iprr-td groupmode O Wr
category (TBU) */

14.3.8 }/* end for */
14.3.9 }/* end for */
14.3.10 ) /* end CS Traffic Unit Init */

- 90 -



E -14.4 or DA
E.1 CS Try to Start( FirstRid

-/* Trry-to convert locks on as many descriptor-id groups as possible
for this and later traffic units. Flor each request in a traffic
unit, we start with the first descriptor-id *group needed by the
request and continue with other descriptor-ic groups needed by
the request.
The Cluster Search for a request can proceed when all the

E.2descriptor-id groups needed-by the request are locked. *

E.3 fol each request in this or later traffic units
E.5 TLJDIGTReqPtr = gointer to the next request (TUDIGT entry) in

/* try tQ convert locks on asmn-lsrpo-dgroups (needed
by tis request) as possible *1

EConvertFl uestCSCCLockConversion( TUDIGTReqPtr);
E3 ~if Converta

E1 {/* all descrptor-id qroup needed by the request are locked ~
E.9 send amessage to ID4 to start CS for the request

TUDIGTReqPtr->rid;
E.10 1,*end if *

E.11 /*end for *

E.12 }f'end CSTry toStart *

D = 23.4 or 26.5
D.1 CSCC ReleaseDidGroups ( ReleasingRid

/*This rout ine Is used when DM4 signals DM4 CC that the descriptor-id
groupe co rresponding to a request can lw released.
This routine releases the descriptor-id groups and tries to start

D.2 CS for other requests that are waiting. 'I
D.3 remove TUDIGT entries correspponding to the descriptor-id groups for

the request ReleasingRid;
D.4 ttart CS for other requests *
D.4 VTry to_Start( next later request )

D.5 1*end CSCCReleaseDldGroups *

E.6.1 Request CSCC LockConverslon( TtJDIGT ReqPtr)
/* T!Tls r~utii~e tries to convert-locks on descri ptor- id gros

cpreppndiqtothereauest TUDIGT eqPtr. It returns 'IIWE if
9?f rdescitor-1d gop need the request are locked,
FALSE otherwise. *

E.6.2 { *L o? eddbto convert locks on all the descri ior-li op eddb
requst.We stop when we get to a hescrip or-d group

that we cannot convert lock */
E.6.3 for each desgriptor- id group needed by the request TLJDIGTReqPtr

until we cannot convert lock
E.6.4
E.6.5 TIJDIGT ReqDidGrougtr = pointer to the next descriptor-id group

E.6.6 if TIJDIGT ReqDildGr upPtr->dategory is notBU'
E.6.7 /*trr-to convert lock */
E.6.8 ConvertFlag = CSCC LockConversion( TUDIGT_ReqDidGroupPtr )

E.6.9 )*end if T!JDIGTeqDidGroupPtr->category is not BU *
E.6.10 1/* end for */

E.6.11 return( ConvertFlag )

E.6.12 /*end Request-CSCC LockConversion *

-91-



E.6.8.1 CSCC LockConversion( DidGroupPtr
/~This routine tries to gonvert locks on descri tor-idrop

DidGrouprtr c~rres n itothe request TUDIw;T ReqPtt. Itf
returns TRUE if a1fohe descrip~tor-fd groups newed by the

E.6.8.2 request are locked, FALSE otherwise. *
/* Tv to convert locks on all the descriptor-i 1. rouys needed by

the request. We stop when we get to a descri1~or- d group that
we cannot convert lock */

1:21i~ fof each descriptor-id group needed by the request TUDIGT_ReqPtr
E.6.8.5 IUDIGT _ReqDidGroupPtr 0! pnter to the next descriptor-id group

needd by the request TUDIGT_.ReqPtr;
E.6.8.6 ifVDIGT 1RqvdGutr- tg sntB
E.6.8 .7 tp,,, co~nve~rtgrt isnokB

/* check this descri ptor-id g roup with all the descriptor-id
groups corrspond ing to the EARLI ER requests in TUDIGT */

E§ . for each descrIptor-id-group corresponding to EARLIER requests
E:o88:9
E.6.8.10 TUDIGTPtr = pointer to TUDIGT entry for

tis descriptor-id group
/* we have to compare the two descriptor-id groups only if

one (or both) request is asking for write access (two
reads can go concurrently) */

E 6 8.U1 if TUDIGTReqDidGroupPtr->mode = W or TUDIGTPtr->mode =W
E.6.8.12 I
E.6.8.13 if the two descriptor-id groups have conflicts,

i.e., there cqn be a descriptor-id group
E.6.8.14 {*lock cnobeonverted qrOUiF
E,6.8.16 return(FALSE);

E.6.8.19 /*end for */

Wehave couyred 1UDIGT ReqDiGroupPtr with all the earlier
escriptor- ldroups, su the lock can be converted *

3.6.8.20 TUIGTReqDiclaroupPtr->category - BU;
E.6.8.21 / end if TUDIGT _ReqDidGroupPtr->category is not BU *
E.6.8.22 1*end for *

/* all the descriptor-id groups for the request have been locked *
3.6.8.23 return (TRUE);
E.6.8.24)/* end CSQCLockConversion '

- 92-



APPENDIX C

THE SSL SPECIFICATIONS FOR DIRECTORY MANAGEMENT

The system specification for directory management due to concurrency con-

trol of directory data is given in this appendix.

1' (1 Directory Management with Concurrency Control on Directory Data ,
2 Design: : 8;
3 Designer : A. Orooji *1

14 Date : July 7, 1983 *
(*6 Purpose *1
T e rectory data, namely the descriptor-to-descriptor-id *

---*, talefDIT) and the cluster-definition tableCDT), maybe *
1, modified during request execution. Thus before descriptor search(DS) *

can access DMIT or cluster search(CS) can access CDTappropriate *
locks must be obtained Direvtory management was modified to allow
/for concurrency control of this d rectory data.

(8) Procedure Hierarchy for Directory anagement(DM)

DM

IYI IMR$ DM R$
intlt Me'sage Selder

DM CNTL DM THIS
ANOTHEr- BEG -
BE MSG -

: I II II -4-

DM~ R$ MR D141R$ 14~ NINS DI 2
Type Be-No DefcId DESC DESC-

-- SR -- SR -

7 7
I MDM DM C DM DB &3

A Ri- Attr - DidGroups Ri $  Executable
LockEd Locked -Req

I I I I I I
INS INS DB S$ INS NINS DM S$
CLUS CLUS- BS-- ADMR GR AfDR-GR ReeProc
GR - GR -

OM Broadcast_
DIDs

-DT SAVE

- 93 -



(11) Program Specifications

List of abbreviations:
AG - address generation
AM - attributI table

- concurrency control
CDT' - cluster-definition table
CS - cluster search

da se
DIT - descr ptor-to-descriptor-id table

directory managementDS escriloi search
hi Insert" information generation

I 2 Tain() /* Directory-Management */
3* do initialization*/

3 DM nit(jwh4 e ( TRUE)

go gt the next message for Directory-management */
6 IRSMe~ge

f-get se'rer name of the message */
7. sender =M R$Sendero;sftch (seTder)

case G PCLB: /* message from controller or another backend */
11 DM ANMUM BE MG()
12 brak; -

1R case THIS BACKEND: /* message from this backend */i4 DM THIS BE _SG (sender);15 br~ak;

16 default:
17 error;
18 break;

19 }/* end switch */

20 }/* end while */

21 )/* end main */

- 94 -



.- ,a: . -_ ' _ . -- ' -. , " . . - .a .-. - -'' - : . * -
' ' . !

11.1 DM CNTL ANOTHER BE MG()
/* Tris routthe-is used when there is a messaqe for Directory */

11.2 ~ /* Management from the controller or another backend.
/* get the type of the message */

11.3 = DMe RTv~e 0
11.4 c ( MsgType11.511.6 case ParsedTrafUnit: /* requests from Request-Preparation */

11.6cas arserft,:C attributes that are needed by the rnuests

ta e t r fic unit have to be sent to DS CC toget r(at once) /
11.7 send all the type-C attributes needed by the traffic unit

to DS cc-
/* the type-C attributes Treeqd by the tffic unit:

" for an insert request in the trafic unit, all the
type-C attributes in the record (lock for write
access)

" for a non-insert request in the traffic unit the
type-C attributes in that part of the query that this
backend will perform DS on (lock for read access)

" for an update request, the attribute-beinq-modified
if it is type-C (lock for write access) *7

/* process the reguess one by .one */
11.8 fo each request in ParsedTratunit11.911.9 if( ReqType =-- INSERr)
11I
11.12 done = INS DESC SR( ...

/*-INS DESC SR returns true if it performs DS
on 1l ttre keVwords that ths backe is
supposed to pbrform DS on. */

11.13 s/* Cluster Search & Address Generation are done later */

11.14 else11.15
11.15 {/* request is non-insert */
11.16 done = NINS DESC SR( te i rr;

/* WINS DESC SR returns true if it performs DS
on aTl thu predicates that this backend is
supposed to perform DS on. P.

11.17 /* Cluster Search & Address Generation are done later */

11.18 if done = true )
1* DS is done on all keywords/predicates that this

backend is supposed to do DS on- broadcast the
descriptor ids to the other backends */

11.19 DM Broadcast DIDs( ...
11.20 }/* enz for */ -
11.21 break;

11.22 case NewDesc: /* new descriptor from Descriptr-ld-Generato.
/* receive the descriptor id generated in the controller -/

11.23 DM R$Descld(&rid, &predicate, &new desc id);
/*--store the descriptor id and indrcate-that DS is done for a,,, keyword */

11.24 done = DI DP2(&rid, &predicate, &new desc id);
/* Or DP2 returns true if DS is-done-on all the keywords

that this backend is supposed to perform DS on. */
11.25 if C done = true )

* S is done on all keywords that this backend is supposed
to do DS on; broadcast the descriptor ids to the other

1. 26 DM Broadcast DIDs( ...
11 .27 breakT

- 95 -



4b -,,.

11.28 case BeNo: /* backend number (selected for record insertion)
from gackend-Selector *11"receive the bakend number t

11.29 i4 RSBe No(&rld, &be no, &c d);
11.30 if-this-backend is supposed to insert the record

ll:3~ update directory tables if needed (new cluster);

11.34 release the descriptor-id group locked by the request;
11.35 If all the requests in the traffic unit have finished

C uster Search
11.36 {/* the traffic unit is sent to Da CC when all the requests

in it have finished CS */
11.37 if all the eqrlier TUs which had conflict with this TJ

in CS have been sent to DB C
/* recall: traffic units are sent ir order to DB CC */

11.38 send the traffic unit to DBConcurrency-Control;
11.39 1
11.40 break;

11.41 case

11.42 }/* end switch */
11.43 }/* end DM CNTM ANOTHER BE MSG */

14.1 DM THIS BE MSG(sender)
-/* Tfis-routine is used when there is a message for Directory

14 Management from a task in the same backend. */
14. switch ( sender
14.4 {
14.5 case DM ConcurrencyControl:
141.6 k

8 case DB ConcurrencyCntrol:

14.11 case RecordProcessing:

14.12 I ;ak;

1 default:
error;
break;

14.16 }/* end switch */

14.17 }/* end DM THIS BE MSG */

- 96 -



14.6.1 DM DMCC MSG()7* ThTs routine is used when there is a message for Directory*/
/* Management from DM Concurrency Control (in the same backehd). *1

14.6.2 /* get the type of the message

14.6.3 = the message *
14.6.4 switch
14.6.5 (
14.6.6 case AttrLocked: /* attr needed by a request is locked */

/* get the attribute name */
14.6.7 DM R$Attr(&rid attr);/* -o the descriptor search if needed ./
14.6.8 done = D DMCC Attr Locked(&rid, attr)

/*-DM DRCC Attr Locked returns true if DS is done on
alt thekey rds/predicates that this backend is
supposed to perform DS on. -/

14.6.9 if ( done - true )/ DS is done on all keywo rdspredicates that this backend
is supposed to do DS on; Droadcast the descriptor ids
to the other backends */

14.6.10 DM BroadcastDIDs( ...
14.6.11 breakT -

14.6.12 case DidGroupsLocked: /* descriptor-id groups needed by a request
are locke*//* r elve thge request id *14.6.13 D RSRid(&rdd ,

/* cb the Cluser Search *
14.6.14 DM DMCC DidGroupsLocked (&rid);
14.6.15 break; -

14.6.16 case ...

14.6.17 }/* end switch */

14.6.18 )/* end DM DMCC MSG */

14.9.1 DM DBCC MSGO(149ThTs routine is used when there is a message for Directory *

14.9.2 /* Management from DB Concurrency Control (In the same 
backehd). -/

/* get the type of the message */
14.9.4 (wth Ms~p
14.9.
14.9.6 case ExecutableRep /* DB CC has given permission to ecute

request, I.e. thu request can continue wih WAdress
Generation and the rest of request execution */

14.9. /t rrequest id */
14.9.7 DM R$Rid(&rid);

/*' o the Address Generation */
14.9.8 DM DBCC ExecutableReq(&rid);
14.9.9 break; -

14.9.10 case ...

14.9.11 )/* end switch */
14.9.12 1/* end DM DBCC MSG */

997

- 97 -

i ..,, p



11.12.1 INS DESC SR( ... i7* ThTs routine is used for processing insert requests. It finds *
/* the descriptors that satisfy the keywords in an insert request.

11.12.2{
/* if there are X keywords (in the record being inserted) and N */
/* backends, each backend performs descriptor search on X/N */
/* keywords

11.12.3 for each keyword that this backend is supposed to do descriptorsearch
11.12.4 

f
11.12.5 if attr in keyword is not type C
11.12.6 do the descriptor search;
12/* t7e-C attributes should be locked for write before DS */V; 11.12.7 /*end for"/

11.12.8 if D is done on all keywords that this backend is supposed to do[ '""DS on
11.12.9 return(true);
1, .12.10 else

11..12.11 return(false);

11.12.12 }/* end INS DESC SR */

11.16.1 NINS DESC SR( ... )
/' ThiE" routine is used for processing non-insert reqyests. It */
/* finds the descriptors that satisfy the predicates in a

11.16.2 /- non-insert request.
1* if there are X predicates (in the query) and N backends, each */
/* backend performs descriptor search on X/N predicates

11.16.3 for each predicate that this backend is supposed to do descriptor
1 1i.16.4 {if search
11.16.5 attr in predicate is not type C
11.16.6 do the descriptor search;
11.16./* tye-C attributes should be locked for read before DS */11.16.7 }/* end for'

11.16.8 if DS is done on all predicates that this backend is supposed to do
DS on

11.16.9 return(true);
.16.10 else

11.16.11 return(false);

11.16.12 )/* end NINSDESC SR */

11.24.1 DI DP2(rid, predicate, new desc id)
-/* Tis routine is used-for Thsert requests. It iq callqd when *1

1* Insert-Information-Ggneration sends a new de* riptor id to the */1* backends. This routine adds the descriptor 1d to MDIT. It
/* also indicates that the descri tor id is ready for the insert */
/* request which is waiting for te descriptor i. *11.24.2 f

11.24.3 update the MDIT (and AT if needed);
11.24.4 for the insert request which is waiting for this descriptor id,

indicate the descri tor search for that keyword is finLAhed;
11.24.5 if DS is done on all keyworgs that this backend is supposed to doDS on
11.24.6 return(true);

S11.24.7 else
11.24.8 return(false);

/* the type-C attributes will be released before Cluster Search */
11.24.9 }/* end DIDP2 */

5. -98-

5%
*' % .*.*5* 5**

, .o° m S *. S ' . ~ *4 .* 5.~(. S .* % ~



[4.

14.6.8.1 DM DMCC Attr Locked(rid, attr)
11 Thi9 routine is used when DM Concurrency Control signals */
1* 1irectory Management that an-attribute needed by a request */

14..8.2 * is lock.
14.6.8.3 ReType type of the request;

14.6.8.4 sw tch Reqrype
14.6.8.5
14.6.8.6 case INSERT:

/* we recall that this backend locks all type-c attributes in
the record even those that other backends will do D9 on so
we need to check to see if this backend is supposed to AO
DS; we can have DM Concurrency Control not send a message
back for the attributes that will be processed in the other
backends [Directory Management, of course, must tell
DM Concurrency Control (when sending attributes) about this] */

14.6.8.7 if tiTis backend is supposed to do descriptor search
14.6.8.8 f
14.6.8.9 do descriptor search for the keyword having the attribute;

/* if the type-C attribute has a new value, we need a new
descriptor. In descriptor search, if no descriptor is
found, a message is sent to the Insert-Information-
Generation to generate a new descriptor id. */

14.6.8.10 if descriptor search is done on all keywords
14.6.8.11 return (true);
14.6.8.12 else
14.6.8.13 return(false);
14.6.8.14 J/* end if */

/* the type-C attributes will be released beforecluster search b

14.6.8.15 break;
14.6.8.16 case RETRIEVE:
14.6.8.17 case DELETE:

/* we recall that, for non-insert requests, only the attributes
that this backend is supposed to do descriptor search on
are sent to DM Concurrency Control */

14.6.8.18 do the descriptor search for all predicates having
the attribute;

14.6.8.19 release the attributei
14.6.8.20 if descriptor search is done on all predicates
14.6.8.21 return(true);
14.6.8.22 else
14.6.8.23 return(false);
14.6.8.24 break;

14.6.8.25 case UPDATE:
14.6.8.26 do the descriptor search for all predicates having

the attribute;14.6.8.27 if attr is not the attribute-beinq-modified14.6.8.28 release the attribute since DDIT will not be modified;
14.6.8.29 else
14.6.8.30 don't release the attribute yet since DDIT may be modified

1683i as a result of inserts caused by the update;
14.6.8.31 if descriptor search is done on all predicates
14.6.8.32 return(true);
14.6.8.33 else
14.6.8.34 return(false);
14.6.8.35 break;

14.6.8.36 default:
14.6.8.37 error;
14.6.8.38 break;

14.6.8.39 }/* end switch */
14.6.8.40 }/* end DM DMCC Attr Locked */

99

*1 -9 9--



• . . . - . ,'Y L _ i . . . .. . ..,.° . . . . . . . "- .- .- ..- . . .
%T'W

* 14.6.14.1 DM4 Df4CC DidGroups Locked(rid)
1 Thi o nroutine Ts used when DM Concurrency (ontrol signals */
/* Directory Management that thE descriptor-id groups needed by a
/* request are locked. The request can then proceea with
/* Cluster Search.14.6.14.2 f

14.6.14.3 = type of the request;14.6.14.3 R d lse idte ftecutr~ *
14.6.14.4 sw tc (ReqType14.6.14.5 (Re )

14.6.14.6 case INSERT:/* do Cluster Search (i.e., find the id of, the cluster to*/
/* which the record being inserted belongs)14.6.14.7 cid = INS CLUS GR( ... );

/* th-f desiriptor 'd roup lockel by the request will bereleased when c1us29r s.arch is agne ana Insert-Information-Generation has determined wnetner or not

L' there is a new cluster and CDT has been modified */
/* send the f-uster id to Backend-Selector */V14.6.14.8 DM S$BS( ... )

-4/. traffic unit will be sent to DB Concurrency-Control
after Insert-Information-Generation responds */

14.6.14.9 break;

14.6.14.10 case RETRIEVE:
14.6.14.11 case DELETE:

/* do Cluster Search (i.e., find the ids of the clusters */
/* that satisfy the query in the request) *1

14.6.14.12 NINS CLUS GRI .. 
-

14.6.14.13 rele-Sse te descriptor-id groups locked by the request;
14.6.14.14 if all the reuests in the traffic unit have fini hed

Vster Search
14.6.14.15 {/* the traffic unit is sent to DB CC when all the requests

in it have finished CS "/
14.6.14.16 if all the earlier TUs which had conflict with this TU

in CS have been sent to DB CC
/* recall: traffic units are sent iTr order to DB CC */

14.6.14.17 send the traffic unit to DBConcurrency-ControT;
14.6.14.18 )
14.6.14.19 break;

14.6.14.20 case UPDATE:
/* do Cluster Search (i.e. find the ids of the clusters
/* that satisfy the query in the request) */

14.6.14.21 NINS CLUS GRT .** ,
7* de~criptor-ld groups locked by the request will be

released after the update is cmpletel dQne *J
14.6.14.22 if all the requests in the traffic unithave YinishedClusterSearch
14.6.14.23 (/* the traffic unit is sent to DB CC when all the requests

in it have finished CS */
14.6.14.24 if all the earlier TUs which had conflict with this TU in

CS have been sent to DB CC
/* recall: traffic units are sent in order to DB CC */

14.6.14.25 send the traffic unit to DBConcurrency-ControT;

11.2:1:21break;

34.6 J.44~ default:
error;

14.6. 4.30 break;

14.6.14.31 }/* end switch */

14.6.14.32 }/* end DMDMCC_DidGroupsLocked */

- 00 -



- °- .. . - - - .-

I

14.9.8.1 DM DB(C ExecutableReq(rid)
1* ThTs routine is used when DB Concurrency Control si nals */
/* Directory manaqement that a request can proceed wjtR *
/* Address Generation and the rest of request execution.14.9.8.2 {

14.9.8.3 ReqType = t of the request

perform the Address Generation for the request */
14.9.8.4 if I ReqType = INSERT
14.9.8.5 {/* insert request */
14.9.8.6 INS ADR_GR( ...
14.9.8.7 e
14.9.8.8 else
14.9.8.9 {/* non-insert request */
14.9.8.10 NINS ADR GR( ...
14.9.8.11

/* send the request to Record Processing */
14.9.8.12 DM_S$RecProc( ... );

14.9.8.13 J/* end DMDBCCExecutableReq */

A = 11.19 or 11.26 or 14.6.10
A.1 DM Broadcast DIDs(rid)

/* This r~utine broadcasts the descriptor ids found by this backend */
,* to the otheC backends. It ilso saves these descriptor ids */
/. [which are in request-descriptor table (RDT)] to be used in

A.2 / cluster search later.

A.3 find the RDT for the request;/* save the RDT */
A.4 RDTSAVE(rid, *DT);

A.5 broadcast the descriptor ids to the other backends;
A.6 }/* end DM Broadcast DIDs */

Im

'.'.

- °J
.5.

-101

-. J



A.4.1 RI r AVErid, RDT)
, This routine saves the descriptor ids [which are in request- ./
/* descriptor table (RDT)] found by a backend (during Descriptor -/• W, /k Sercnh.*-/*This rotine is called when this backend has finished DS or

/ t backend has sent the descriptor ids that it has found/" n DS.
/* When the descriptor ids found by all the backends have been

S.4. /* received and saved, we can proceed to Cluster Search.

A.4.3 save the RDT;
/* check to see if all the backends have sent the descriptor ids */

A.4.4 if all RDTs for the request have been saved
A. 4.5 (1* &he request bas fini shed DS *

if tf e request is insert

A.4.8 release all the type-C attributes locked by the request;
/* we r all-that for nnI troque ts, each tye-Cattr rbute, is.releajd im:3a ely after DS as bne

on that attribute es
A.4.9 }
A.4.10 if all requests in traffic unit have finished Descriptor Search
A.4.1 /* th a unit s sent to CS CC when all the requests~~~~i thvefnshed DS*/ -

A.4.12 if all the earlier 7Us which had conflict with this TU in DS
have been sent to CSCC

/* recall that traffic units are sent in order to CS CC */
A.4.14 send the traffic unit to CS Concurrency-Control;

/ te descritgr-id grous corresponding to the requests
in the tratfic uni? ar sent to DM Co:currency-C Mtroi
(for read/write access deending on the que t types);
DM Concurrency-Control wil1 respond when 

all the
d.ritor-id roups for a request have been logked. At
thajt lne, Cluster Search for that request canbe

A.4.15 } performed */

A.4.16 }/* end if all the requests in the TUI have finished DS */

A.4.17 }/* end if all the RDTs for the request have been saved */

A.4.18 }/* end RDr SAVE */

- 102 -

% 
- I



APPENDIX D : REMINING ALGORITHMS FOR THE SECODARY-M MY-PASED

DIRECTORY M'WE)ENT

This appendix contains descriptions of the remaining algorithms for the

secondary-memory-based directory management. 7he first section examines what

happens when the directory data is modified. The second section explains how

to determine if an updated record has changed cluster.

D.1 Updating the Directory Data

In this section, we explain the algorithms used to update the directory

data. We examine two types of updates: one is due to the fact that a new

type-C sub-descriptor is defined, and the other when a new cluster is defined.

When a new type-C sub-descriptor is defined, the IT and the DCBNT mst be

modified. This is covered in Section D.1.1. Mhen a new cluster is defined,

the IBWr is modified. We review this procedure in Section D.1.2.

0.1.1 Updating the DIT and the DCT when a New Descriptor is Defined

As wa described in Section 4.2, new descriptors are not inserted until

desriptor search is finished for all the descriptors in the request. At that

tiue, both the descriptor-to-descriptor-id table(MDIT) and the descriptor-id-

cliuter-bit-asp table(DC3W1) mt be updated. This processing is described in

the next boo sections.

(A) Updating the MIT

The states and transitions for inserting a new descriptor into the DDIT

are shown in Figure D.l. The descriptor information added to the IMIT con-

sists r descriptor id and a range of values which specify the new descrip-

tor. -st step in inserting a new descriptor is to read the appropriate

sequen, n(,-, )). (We recall that this sequnce node wa identified in the

descrik, . search phase. When the descriptor search for this descriptor was
unsuccessful, the pointer to the sequence node where the nw descriptor infor-

mation should be inserted was then determined.) If there is room in this node,

then the descriptor is inserted(17) and processing is finished(l8). If there

Is no ro in this node, the node mst be split and both halves written to

- 103 -



Beg ip to insert a
now aeicriptor into DDIT

.4I .. ...1 Vl

561V

I I

of sequence nodeI
71
v

I Writing second half]
of sequence node I 17

v v

! Reading @n

index noe ,

13 111v
8 -N-

Iwritinq the first
Ihalf of index nodel

12 IV 15

Wrtl nI riin *he secorA
-half of dex node

14 1V

Write a ite a new root
node which ira node which is an
snode ,r, index node

21 19
V V

Read a
AT node "---:

416 18
V V V

inserting a new descriptor

into the MIT Is done

Note :All reads and writes In the state diagram are for the MOIT
~unless otherwise specified.

'igure D.I. inserting a New Descriptor into the MIT

- 104 -



,-" 03- :6

disk(6,7). Then a new entry must be added to the parent index node, which

must first be read(l). If the parent index node is also full, then it will

also have to be split and an entry added to its parent. In general, it may be

necessary to add a new entry and split several parent index nodes(l1,12,13).
Once an index node is found that is not full, the last insertion is made(15)

and processing terminates for that descriptor(16). In the worst case, the

root node will be full. This occurs when the root node is either an index or

a sequence node. In either case, the root node must be split and a new root

node created(14 for index, 8 for sequence). In addition, since the attribute

table contained a pointer to the old root node, the attribute table must also

be modified(9,3). Then the processing is finished(4). This procedure is used

when the DIT exists for the given attribute.

There is a special case to consider when the DIT does not exist for the

given attribute. In this case, we are inserting the first descriptor for the

given attribute. %hen the first descriptor for an attribute is inserted, it

is only necessary to create the root node(l), which is a sequence node, and

link the attribute table to it as before(2,3). This completes the processing
V. for this case(4). After the descriptor has been added to DIT, we must add

the descriptor to the DCBMT.

(B) Updating the DCBVr

The states and transitions for modifying the DCBRT when a new descriptor
is defined are given in Figure D.2. The bit map being added for a descriptor

specifies which cluster(s) contain the descriptor. Tb find the correct place
to insert the new descriptor into the DCBT, we work with the descriptor id.

Recall that descriptor ids are in the form (attribute id, descriptor-within-

attribute). This pair is converted into a single descriptor number. These

numbers are then subdivided into groups. Fbr each group there is a bit-map

set. When processing a new descriptor id, there may already be a bit-map set

for the group which contains the new descriptor id.. If the bit-map set

exists, it must be read(8) and updated(9). If the bit-map set does not exist,

a bit-map set must be created(3). In either case, the bit map itself must be
created. This bit map is subdivided into several blocks, each of which must

be initialized and stored on the secondary memory(5). The last bit-map block

is special(6) because after it is written, the insertion of this descriptor is

-105 -

*,v y ¢ , , ''''., . ... .°. t ",'t- , r r,",a **'' .
. . ".*



Begin process to insert a
new descriptor into DCBMfT

i i

1 Reading a bit-map set I
for the new descriptor I

I 9

W Iting theblt-mwp

10 (4 11

v 4
I Writing the

5 Ibit-map block

6
V V V

' Writing the Writing the
new bit-map set lastb t p block

2j7

I V

Insirtn4ewdqriptor

Figure D.2. Inserting a New Descriptor into the DCBWT

- 106 -



finished (7).

Two special cases must also be considered. First there may not yet be

any database and therefore there will be no clusters. In this case, the bit-

map set may or may not already exist. if the bit-map set does not exist, one

is created(l). If the bit-map set does exist, it must be read(8) and

updated(1O). In either event, since there are no bit-map blocks for the new

bit-map set, processing is done(2). The second special case occurs when there

are only a few clusters so that there is only one bit-map block for each

descriptor. In this case, after the bit-map set is read(8) and updated(9),

there is only one bit-map block to be written(ll), which completes the pro-

cessing(7).

D.1.2 Updating the DCBMT when a New Cluster is Defined

When a new cluster is created by an insert request, it is necessary to

add the new cluster id and corresponding descriptor-id set to the DCBMT. This

addition occurs after the backend number at which the insert request will be

7 executed is received from the controller. At this time a new column,

corresponding to the new cluster Id, must be added to the DCBMT. Thus a 1 bit

has to be added to the bit map for each descriptor id in the descriptor-id set

corresponding to the cluster. The bit maps for the other descriptor ids do

not have to be modified, since all yet to be used entries were set to 0 when

those bit maps were created.

Figure D.3 shows the states and transitions needed to insert the entry

for one descriptor id into the DCDMT. These steps must be repeated for each

descriptor id in the descriptor-id set corresponding to the new cluster. The
- first step is to read the bit-map set corresponding to the descriptor id(l).

Then the first block of the bit map is read(S), followed by the rest of the

bit-map blocks(6). Now there are two cases depending on whether or not there

is space in the last bit-map block. If there is space in the last bit-map

block, then the appropriate bit is changed to 1 and this block is written(9).

On the other hand, if there is not space in the last bit-map block, then a new

block must be created and linked to the previous last block. Thus a new

secondary storage address is obtained and this address is put in the previous

last block, which is then written(7). Then the new block is written(8). In

--4 either case, processing is finished for this descriptor id after the last

- 107-

.9 .%%#.LV. '''-X



V-A~~ ~ ~ ~ -jo -7 -. -. 4p. .-. ... *.-- -. P , *,., -

Bekgin process to insert a
nwcluster id into DCBI

4'

v

forae=descriptbr z

I m i|tri int i | |

5 1~

V v

2 Reading btma 6
for each descriptor id

II& 1 &Li--v v

3j 8

aWritina , t e
,I

last bi1t-Wa block

4

1 nto is~r1 aonm

Figure D.3. Inserting a New Cluster Id into the DCBMT

- 108 -



bit-map block has been written(4). There is also one special case to con-

sider. The cluster being added may be the first cluster in the database. In

this case there will be no bit-map blocks. Thus the first bit-map block is

created and linked to the bit-map set. The updated bit-map set is written(2)

and so is the bit-map block(3), finishing the processing(4).

The above procedure is repeated for each descriptor id in the

descriptor-id set corresponding to the cluster being defined. When this has

been done, the DCBMT has been updated to contain the information for the new

cluster.

D.2 Determining if an Updated Record Has Changed Cluster

When record processing updates a record, it must find out if the record

has changed cluster. If it has, then an insert request must be generated so

that the record can be inserted into the correct cluster. Otherwise, the

record is updated in place. Record processing must send a message to direc-

tory management asking if the record has changed cluster. Directory manage-

ment then must reply yes or no. If the attribute being modified is not a

directory attribute, then it is clear that the record has not changed cluster.

In addition, if the attribute being modified is a type-C attribute, then the

record has changed cluster only if the old and new values are different. If

they are the same, then the record has not changed cluster. In either case,

it is not necessary to consult the directory data to determine if the record

has changed cluster.

In the event the attribute being modified is a directory attribute which

is not of type C, processing is more complex. In this case we must determine

if the old and new values are derivable from the same descriptor id. Thus we

must determine the descriptor ids for the old and new values. This determina-

tion requires searching the DIT twice, once for each value.

The states and transitions to determine if an updated record has changed

cluster is shown in Figure D.4 The first step in determining the descriptor id

corresponding to the old value is to read the root node(l). Then other nodes

of DIT are read(2) until the appropriate sequence node is found. After the

descriptor id corresponding to the old value has been determined, the search

for the descriptor id corresponding to the new value begins by reading the

- 109 -



IBegin checking to see ifan UP-
dated record has changed cluster

Jij

VV

V ( Readin the. MIT while searching for
the ppro riate sequence2 oe th find 2

*: the descripaor-id of the old record value

3

V V

R adi the OIT while searchinQ fQrI
th desripr ate seu nce node t9 Fd 4

the descripor-id of new record value

5'

V

I dated record % ss changed cluer

Figure D.4. Determining if an Updated Record Has Changed Cluster

- 110 -



root node again(3). Then other DOIT nodes are read (4) until the sequence node
containing the descriptor id corresponding to the new value Is found. After

determining if the old and new descriptor ids are the same, a message is sent

to record processing saying whether or not the record has changed cluster,

completing the processing of this changed-cluster me.sage(5).

One update request may cause several database records to be updated.

* Record processing must determine if each has changed cluster. Thus one update

request may cause several messages asking if a record has changed cluster to

be sent to the directory management. only one of these is processed at a

time. Others must wait. Thus after the directory management has determined

whether one record has changed cluster, it should answer the same question for

the next record, if any, that is waiting.

.'"4%

. 5.

.,S1...

4,

bC

...



INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2

Code 0142
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52Hq 194

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Chief of Naval Research
Arlington, VA 22217



ItsI

AO

*'41

* .- ..- - - - 0- p


